Sentiment Analysis of TIMNAS Indonesia's Participation in the Asian Cup U23 2024 on X Using Naive Bayes and SVM
PDF

Keywords

Indonesian national team
Naive Bayes
sentiment analysis
Support Vector Machine
X

How to Cite

Fathurrohman, S., Afandi, I. R., & Hasan, F. N. (2024). Sentiment Analysis of TIMNAS Indonesia’s Participation in the Asian Cup U23 2024 on X Using Naive Bayes and SVM. IJID (International Journal on Informatics for Development), 13(1), 434–447. https://doi.org/10.14421/ijid.2024.4504

Abstract

This study aims to analyze the sentiment of the Indonesian public regarding the participation of the Indonesian National Team in the 2024 U-23 Asian Cup through the social media platform X. Sentiment analysis is crucial for understanding public perception and its impact on support for the national team. The research methodology involves collecting user comments on X related to the team's performance during the tournament, followed by data cleaning. The dataset is manually labeled, with 80% used as training data for algorithmic model training and the remaining 20% as test data, classified using Naive Bayes and Support Vector Machine algorithms. The analysis results indicate that the SVM algorithm achieves a higher % accuracy rate of 95% compared to Naive Bayes, which achieves 87%. The majority of the 3367 opinions analyzed express positive or satisfactory sentiments towards the national team's participation. However, there are fewer negative sentiments, highlighting areas requiring team management's attention. This study provides valuable insights into public perception of the Indonesian National Team. Furthermore, these findings can inform policymakers and team managers' decision-making to enhance the team's quality and performance in the future.

https://doi.org/10.14421/ijid.2024.4504
PDF

References

I. R. Afandi, N. Pratiwi, A. A. Rizki, M. Irva, and M. F. Aulia, “Perancangan Sistem Informasi Pelayanan Pembuatan Surat Online Di Desa Ciangsana Bebasis Website,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 571–577, 2022, doi: 10.36040/jati.v6i2.5318.

O. B. Islamuddin and I. Yuadi, “Analisis Text Clustering Pada Data Mining Menggunakan Metode K- Nearest Neighbor (KNN) Dan Decision Tree,” J. KHATULISTIWA Inform., vol. 11, no. 2, pp. 128–134, 2023, doi: https://doi.org/10.31294/jki.v11i2.16072.g6323.

I. M. Noor and M. Turan, “Sentiment Analysis on New Currency in Kenya using Twitter Dataset,” IJID (International J. Informatics Dev., vol. 8, no. 2, p. 81, 2020, doi: 10.14421/ijid.2019.08206.

P. Afikah, I. R. Afandi, and F. N. Hasan, “Implementasi Business Intelligence Untuk Menganalisis Data Kasus Virus Corona di Indonesia Menggunakan Platform Tableau,” Pseudocode, vol. 9, no. 1, pp. 25–32, 2022, doi: 10.33369/pseudocode.9.1.25-32.

E. R. Setyaningsih, “Sentiment Classification untuk Opini Berita SepakBola,” J. Intell. Syst. Comput., vol. 3, no. 2, pp. 93–98, 2021, doi: 10.52985/insyst.v3i2.193.

M. Habibi, D. Handoko, D. Kurniawan, Rasman, and R. Anggriani, “Analisis Framing Robert Entman Pemberitaan Tragedi Kanjuruhan di Media Asing,” Perspekt. Komun. J. Ilmu Komun. Polit. dan Komun. Bisnis, vol. 7, no. 1, pp. 43–64, 2023, doi: https://doi.org/10.24853/pk.7.1.43-64.

A. Damayanti and A. K. Maulidiyah, “Analisa Sentimen Pada Pembatalan Piala Dunia U20 di Indonesia Menggunakan Metode Support Vector Machine,” JITSI J. Ilm. Ter. Sains dan Teknol., vol. 1, no. 2, pp. 97–103, 2023, doi: 10.25139/jitsi.v1i2.6607.

M. Kholilullah, M. Martanto, and U. Hayati, “Analisis Sentimen Pengguna Twitter(X) Tentang Piala Dunia Usia 17 Menggunakan Metode Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 392–398, 2024, doi: 10.36040/jati.v8i1.8378.

R. P. Ratnaningtyas and Y. A. Muhammad, “Analisis Pemberitaan Timnas Indonesia pada Media Daring,” MUKASI J. Ilmu Komun., vol. 2, no. 1, pp. 45–52, 2023, doi: 10.54259/mukasi.v2i1.1492.

J. Annissa and A. Ariesta, “Analisis Semiotika Makna Nasionalisme melalui Text Mining pada Media Sosial Twitter di Kejuaraan AFF Tahun 2020,” J. IPTEKKOM J. Ilmu Pengetah. Teknol. Inf., vol. 25, no. 1, pp. 69–84, 2023, doi: 10.17933/iptekkom.25.1.2023.69-84.

R. Sulastiyono, A. Setiawan, and S. Nugroho, “Sentimen Analisis Pembatalan Indonesia Menjadi Tuan Rumah Piala Dunia U-20 Menggunakan Metode Naïve Bayes,” J. Inf. Syst. Res., vol. 4, no. 4, pp. 1387–1394, 2023, doi: 10.47065/josh.v4i4.3737.

A. D. Dayani, Yuhandri, and W. G. Nurcahyo, “Analisis Sentimen Terhadap Opini Publik pada Sosial Media Twitter Menggunakan Metode Support Vector Machine,” J. KomtekInfo, vol. 11, no. 1, pp. 1–10, 2024, doi: 10.35134/komtekinfo.v11i1.439.

L. Lestari, M. D. R Wahyudi, and U. Kiftiyani, “Veil and Hijab: Twitter Sentiment Analysis Perspective,” IJID (International J. Informatics Dev., vol. 9, no. 1, p. 52, 2020, doi: 10.14421/ijid.2020.09108.

T. Y. Widiyanti, T. B. Adji, and I. Hidayah, “The Social Engagement to Agricultural Issues using Social Network Analysis,” IJID (International J. Informatics Dev., vol. 10, no. 1, pp. 1–7, 2021, doi: 10.14421/ijid.2021.2185.

F. Maulana, M. A. Abdullah, J. Sari, D. Z. Siddik, M. Agustinus, and D. D. Saputra, “Sentiment Analysis on the Twitter Pssi Performance Using Text Mining With the Naïve Bayes Algorithm,” J. Comput. Inf. Syst., vol. 18, no. 2, pp. 211–216, 2022, doi: 10.33480/pilar.v18i2.3938.

R. Pebrianto, S. N. Nugraha, A. Latif, and M. R. Firdaus, “Analisis Sentimen Twitter Terhadap Menteri Indonesia Dengan Algoritma Support Vector Machine Dan Naive Bayes,” E-Link J. Tek. Elektro dan Inform., vol. 17, no. 1, p. 1, 2022, doi: 10.30587/e-link.v17i1.3965.

M. A. Hanafi and A. Solichin, “Analisis Sentimen Terhadap Pssi Atas Tragedi Kanjuruhan Menggunakan Multinomial Naïve Bayes,” Telemat. MKOM, vol. 15, no. 1, p. 21, 2023, doi: 10.36080/telematikamkom.2292.

S. Rahmawati and M. Habibi, “Public Sentiments Analysis about Indonesian Social Insurance Administration Organization on Twitter,” IJID (International J. Informatics Dev., vol. 9, no. 2, pp. 87–93, 2020, doi: 10.14421/ijid.2020.09205.

A. E. Nanada, A. N. Sihananto, and A. M. Rizki, “Analisis Sentimen Pada Pembatalan Tuan Rumah Indonesia Di Piala Dunia U-20 Menggunakan Fasttext Embeddings Dan Algoritma Recurrent Neural Network,” J. Tek. Inform. Sains dan Ilmu Komun., vol. 2, no. 2, 2024, doi: https://doi.org/10.59841/saber.v2i2.1000.

F. Matheos Sarimole and K. Kudrat, “Analisis Sentimen Terhadap Aplikasi Satu Sehat Pada Twitter Menggunakan Algoritma Naive Bayes Dan Support Vector Machine,” J. Sains dan Teknol., vol. 5, no. 3, pp. 783–790, 2024, doi: 10.55338/saintek.v5i3.2702.

L. A. Fudholi, N. Rahaningsih, and R. D. Dana, “Sentimen Analisis Perilaku Penggemar Coldplay Di Media Sosial Twitter Menggunakan Metode Naive Bayes,” J. Mhs. Tek. Inform., vol. 8, no. 3, pp. 4150–4159, 2024, doi: https://doi.org/10.36040/jati.v8i3.9827.

A. Ardiyanto and E. I. Sela, “Analisis Sentimen Opini Mahasiswa Terhadap Aplikasi Portal Mahasiswa UTY Menggunakan Metode Naïve Bayes Classifier,” J. Indones. Manaj. Inform. dan Komun., vol. 5, no. 1, pp. 525–540, 2024, doi: 10.35870/jimik.v5i1.508.

Y. B. Seran and Supatman, “Analisis Sentimen Masyarakat Terhadap Kinerja Kerja Presiden Joko Widodo Enggunakan Algoritma Support Vector Machine,” J. Mhs. Tek. Inform., vol. 8, no. 4, pp. 7190–7195, 2024, doi: https://doi.org/10.36040/jati.v8i4.10171.

S. A. Sutresno, “Analisis Sentimen Masyarakat Indonesia Terhadap Dampak Penurunan Global Sebagai Akibat Resesi di Twitter,” Build. Informatics, Technol. Sci., vol. 4, no. 4, pp. 1959–1966, 2023, doi: 10.47065/bits.v4i4.3149.

E. L. Rara and E. Mailoa, “Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Perubahan Piala Dunia U-20,” Progresif J. Ilm. Komput., vol. 20, no. 1, pp. 259–268, 2024, doi: https://doi.org/10.35889/progresif.v20i1.1550.

H. Setiawan and I. Zufria, “Analisis Sentimen Pembatalan Indonesia Sebagai Tuan Rumah Piala Dunia FIFA U-20 Menggunakan Naïve Bayes,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1003–1012, 2023, doi: 10.30865/mib.v7i3.6144.

M. A. Kurniawan, A. S. Yuniarti, and S. Makin, “Analisis Sentimen AFC U23 Asian Cup 2024 menggunakan Algoritma Naïve Bayes,” J. IPSIKOM, vol. 12, no. 1, pp. 2478–2483, 2004, doi: https://doi.org/10.58217/ipsikom.v12i1.275.

N. Dalifah, N. Suarna, and W. Prihartono, “Analisis Data Sentimen Negatif Pada Opini Pengguna Twitter Terhadap Berita Sepak Bola Liga 1 Tahun 2022 Dengan Penerapan Support Vector Mechine,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 209–214, 2024, doi: 10.36040/jati.v8i1.8303.

M. Parhusip, S. Sudianto, and T. G. Laksana, “Sentiment Analysis of the Public Towards the Kanjuruhan Tragedy with the Support Vector Machine Method,” JUITA J. Inform., vol. 11, no. 2, p. 241, 2023, doi: 10.30595/juita.v11i2.17405.

F. P. Herlambang and D. Avianto, “Analisis Sentimen Opini Pengguna Twitter Terhadap Tragedi Kanjuruhan Malang dengan Metode Support Vector Machine,” J. Media Inform. Budidarma, vol. 7, no. 4, pp. 1727–1739, 2023, doi: 10.30865/mib.v7i4.6332.

R. Ardianto and S. K. Wibisono, “Analisis Deep Learning Metode Convolutional Neural Network Dalam Klasifikasi Varietas Gandum,” J. Kolaboratif Sains(JKS), vol. 6, no. 12, pp. 2081–2092, 2023, doi: 10.56338/jks.v6i12.4938.

B. A. Maulana, M. J. Fahmi, A. M. Imran, and N. Hidayati, “Analisis Sentimen Terhadap Aplikasi Pluang Menggunakan Algoritma Naive Bayes dan Support Vector Machine (SVM),” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 2, pp. 375–384, 2024, doi: 10.57152/malcom.v4i2.1206.

A. T. Susilawati, N. A. Lestari, and P. A. Nina, “Analisis Sentimen Publik Pada Twitter Terhadap Boikot Produk Israel Menggunakan Metode Naïve Bayes,” J. Ilm. Mhs., vol. 2, no. 1, pp. 26–35, 2024, [Online]. Available: https://doi.org/10.59603/niantanasikka.v2i1.240

I. R. Afandi, F. Noor Hasan, A. A. Rizki, N. Pratiwi, and Z. Halim, “Analisis Sentimen Opini Masyarakat Terkait Pelayanan Jasa Ekspedisi Anteraja Dengan Metode Naive Bayes,” J. Linguist. Komputasional, vol. 5, no. 2, pp. 63–70, 2022, doi: https://doi.org/10.26418/jlk.v5i2.107.

D. A. Nugroho and F. N. Hasan, “Analisis Sentimen Kegiatan Pembersihan Sampah Pada Media Sosial X Menggunakan SVM dan Naïve Bayes,” J. MEDIA Inform. BUDIDARMA, vol. 8, no. April, pp. 843–853, 2024, doi: 10.30865/mib.v8i2.7562.

M. Samantri and Afiyati, “Perbandingan Algoritma Support Vector Machine dan Random Forest untuk Analisis Sentimen Terhadap Kebijakan Pemerintah Indonesia Terkait Kenaikan Harga BBM Tahun 2022,” J. JTIK (Jurnal Teknol. Inf. dan Komunikasi), vol. 8, no. 1, pp. 1–9, 2024, doi: 10.35870/jtik.v8i1.1202.

G. Radiena and A. Nugroho, “Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Kai Access Menggunakan Metode Support Vector Machine,” J. Pendidik. Teknol. Inf., vol. 6, no. 1, pp. 1–10, 2023, doi: 10.37792/jukanti.v6i1.836.

R. Wati, S. Ernawati, and H. Rachmi, “Pembobotan TF-IDF Menggunakan Naïve Bayes pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH,” J. Manaj. Inform., vol. 13, no. 1, pp. 84–93, 2023, doi: 10.34010/jamika.v13i1.9424.

Fauzan Baehaqi and N. Cahyono, “Analisis Sentimen Terhadap Cyberbullying Pada Komentar Di Instagram Menggunakan Algoritma Naïve Bayes,” Indones. J. Comput. Sci., vol. 13, no. 1, pp. 1051–1063, 2024, doi: 10.33022/ijcs.v13i1.3301.

I. A. Ricky, I. F. Hanif, F. N. Hasan, E. S. Sinduningrum, Z. Halim, and N. Nunik, “Analisis Sentimen Opini Masyarakat Terkait Penyelenggaraan Sistem Elektronik Menggunakan Metode Logistic Regression,” J. Linguist. Komputasional, vol. 5, no. 2, p. 77, 2022, [Online]. Available: https://t.co/23c4krbjp

J. E. B. Sinulingga and H. C. K. Sitorus, “Analisis Sentimen Opini Masyarakat terhadap Film Horor Indonesia Menggunakan Metode SVM dan TF-IDF,” J. Manaj. Inform., vol. 14, no. 1, pp. 42–53, 2024, doi: 10.34010/jamika.v14i1.11946.

A. K. Sari, A. Irsyad, D. N. Aini, Islamiyah, and S. E. Ginting, “Analisis Sentimen Twitter Menggunakan Machine Learning untuk Identifikasi Konten Negatif,” J. Adopsi Teknol. dan Sist. Inf., vol. 3, no. 1, pp. 64–73, 2024, doi: https://doi.org/10.30872/atasi.v3i1.1373.

A. Karimah, G. Dwilestari, and Mulyawan, “Analisis Sentimen Komentar Video Mobil Listrik Di Platform YOUTUBE DENGAN METODE NAIVE BAYES,” J. Mhs. Tek. Inform., vol. 8, no. 1, pp. 767–773, 2024, doi: https://doi.org/10.36040/jati.v8i1.8373.

L. A. Susanto, “Komparasi Model Support Vector Machine Dan K-Nearest Neighbor Pada Analisis Sentimen Aplikasi Polri Super App,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 2, 2024, doi: 10.23960/jitet.v12i2.4152.

A. T. Mukti and F. N. Hasan, “Analisis Sentimen Warganet Terhadap Keberadaan Juru Parkir Liar Menggunakan Metode Naive Bayes Classifier,” J. Media Inform. Budidarma , vol. 8, no. 1, pp. 644–653, 2024, doi: 10.30865/mib.v8i1.6982.

S. Nurhaliza, D. Febriawan, and F. N. Hasan, “Sentiment Analysis of Society Towards the Child-free Phenomenon (Life Without Children) on Twitter Using Naïve Bayes Algorithm,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 13, no. 1, pp. 40–48, 2024, doi: 10.32736/sisfokom.v13i1.1944.

D. Ananda and R. R. Suryono, “Analisis Sentimen Publik Terhadap Pengungsi Rohingya di Indonesia dengan Metode Support Vector Machine dan Naïve Bayes,” J. Media Inform. Budidarma, vol. 8, no. 2, pp. 748–757, 2024, doi: 10.30865/mib.v8i2.7517.

P. W. Hardjita, Nurochman, and R. Hidayat, “Sentiment Analysis of Tweets on Prakerja Card using Convolutional Neural Network and Naive Bayes,” IJID (International J. Informatics Dev., vol. 10, no. 2, pp. 82–91, 2022, doi: 10.14421/ijid.2021.3007.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.