K-Means Clustering of Social Studies Performance at Junior High School
pdf

Keywords

academic data
e-learning
Rapidminer
student ability
student performance

How to Cite

Tundo, Raihanah, S., Wahyudi, T. ., & Sugiyono. (2024). K-Means Clustering of Social Studies Performance at Junior High School. IJID (International Journal on Informatics for Development), 13(2), 460–472. https://doi.org/10.14421/ijid.2024.4632

Abstract

This study aims to optimize the use of technology in evaluating student performance by grouping students based on their abilities. The main issues include the underutilization of technology, the absence of an appropriate evaluation system for different levels of student ability, and ineffective methods for grouping students. The K-Means Clustering algorithm was chosen because it has proven effective in grouping academic data in various studies. The data used includes Daily Knowledge Scores (DKS), Daily skill scores (DSS), Mid-term Summative Scores (MSS), End-of-Year Summative Scores (ESS), and Grade Report (GR). The data was analyzed using the CRISP-DM methodology with the help of RapidMiner. The results showed that 28.63% of students were classified as having excellent performance, 50.21% as having good performance, and 21.16% as having moderate performance. The Davies-Bouldin Index score of 1.713 for K=3 was considered sufficient for distinguishing the different student performance groups. The results of this study are expected to help schools provide learning support that better aligns with student needs. Future research is recommended to focus on optimizing the number of clusters (K), applying this method to other subjects, and integrating it with e-learning platforms for real-time student performance monitoring.

https://doi.org/10.14421/ijid.2024.4632
pdf

References

P. B. N. Simangunsong and M. R. Manalu, “Testing the K-Means Clustering Algorithm in Processing Student Assignment Grades Using the RapidMiner Application,” J. Data Sci., vol. 1, no. 2, pp. 51–60, 2023, [Online]. Available: https://ejournal.seaninstitute.or.id/index.php/visualization/article/view/2838/2152

N. O. Malayphone Sonephachanh, “An Approach for Analyzing Student Performance Based on Formative Assessment Scores Using the k-Means Method,” Int. J. Adv. Res. Educ. Soc., vol. 6, no. 1, pp. 16–23, 2024, doi: 10.55057/ijares.2024.6.1.2.

U. F. Laili, A. Tanzeh, N. Efendi, and M. Gufron, “K-Means Clustering Method On Academic Advising Management And Early Detection Of Student Dropout (Sequential Explanatory Mixed Method Study At UIN Sunan Ampel Surabaya And IAIN Kediri),” Int. J. Educ. Res. Soc. Sci., vol. 5, no. 2, pp. 335–346, 2024, doi: 10.51601/ijersc.v5i2.744.

I. W. P. Pramudjianto, A. K. Ningsih, and A. Komarudin, “Grouping Education Students at Pusdikjas Institutions of The TNI-AD’s Disjasad Using the K-Means Clustering Method,” Enrich. J. Multidiscip. Res. Dev., vol. 1, no. 7, pp. 397–411, 2023, doi: 10.55324/enrichment.v1i7.64.

A. F. Arwani, “Intelligent Learning Achievement Prediction System Using K-Means Algorithm at UPT Education Unit SMPN 5 BLITAR,” J. Students Acad. Res., vol. 9, no. 1, pp. 215–222, 2024, doi: https://doi.org/10.35457/josar.v9i1.3100.

M. A. Jabbar, Fi. E. Silmi, and A. T. Satria, “Analysis of Teaching and Learning Activities to K-Means Clustering Method (Case Study of SMK Maarif Al-Mizan),” J. Multimed. Technol. Appl. Softw., vol. 1, no. 1, pp. 28–35, 2024, [Online]. Available: https://ejournal.poltekmi.ac.id/index.php/jmtas/article/view/11/6

C. Yu and Y. Wang, “College Student Management System Based on K-means Clustering Algorithm,” Int. J. New Dev. Educ., vol. 4, no. 2, pp. 28–33, 2022, doi: 10.25236/ijnde.2022.040206.

K. P. Sinaga and M. S. Yang, “Unsupervised K-means clustering algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, doi: 10.1109/ACCESS.2020.2988796.

Kertanah, W. P. Nurmayanti, S. R. Aini, L. M. Amrullah, and M. Sya’roni, “Comparison of Algorithms K-Means and DBSCAN for Clustering Student Cognitive Learning Outcomes in Physics Subject,” Kappa J. Phys. Phys. Educ., vol. 7, no. 1, pp. 251–255, 2023, doi: 10.29408/kpj.v7i2.18428.

E. L. Cahapin, B. A. Malabag, C. S. S. Jr, J. L. Reyes, G. S. Legaspi, and K. L. Adrales, “Clustering of students admission data using k-means, hierarchical, and DBSCAN algorithms,” Bull. Electr. Eng. Informatics, vol. 12, no. 6, pp. 3647–3656, 2023, doi: 10.11591/eei.v12i6.4849.

M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A comprehensive survey and performance evaluation,” Electron., vol. 9, no. 8, pp. 1–12, 2020, doi: 10.3390/electronics9081295.

F. A. Syah, S. P. Hasugian, M. V. A. Adafmi, and A. D. Sibarani, “The Implementation of the K-Means Clustering Algorithm for Awarding Scholarships to Outstanding Students,” J. Comput. Intell. Informatics, vol. 1, no. 1, pp. 9–16, 2024, [Online]. Available: https://journal.unilak.ac.id/index.php/ComniTech/article/view/21127/6503

R. F. Anggraini and S. Sau’da, “Stream Clustering for Selection Recommendations Using K-Means Algorithm: A Case Study in the Informatics Study Program,” J. Inf. Syst. Informatics, vol. 5, no. 4, pp. 1274–1287, 2023, doi: 10.51519/journalisi.v5i4.576.

A. P. Adistya, N. Lutfiyani, P. Tara, Rifaldi, R. Adriyan, and P. Rosyani, “Klasterisasi Menggunakan Algoritma K-Means Clustering Untuk Memprediksi Kelulusan Mata Kuliah Mahasiswa,” OKTAL J. Ilmu Komput. dan Sci., vol. 2, no. 8, pp. 2301–2306, 2023, [Online]. Available: https://journal.mediapublikasi.id/index.php/oktal/article/view/1610/1857

P. Rosyani and F. Syawali, “Application of Advanced Class Determination System Using K-Means Clustering Method (Case Study: SMK Al-Badar Balaraja),” Int. J. Integr. Sci., vol. 2, no. 10, pp. 1557–1570, 2023, doi: 10.55927/ijis.v2i10.6347.

A. F. M. Nafuri, N. S. Sani, N. F. A. Zainudin, A. hadi abd Rahman, and M. Aliff, “Clustering Analysis for Classifying Student Academic Performance in Higher Education,” Appl. Sci., vol. 12, no. 19, 2022, doi: 10.3390/app12199467.

B. Sutara, F. Vulture, and R. Novianti, “Application of K-Means algorithm with CRISP-DM method in student data analysis as a support for promotion strategy,” SIDE Sci. Dev. J., vol. 1, no. 1, pp. 1–7, 2024, [Online]. Available: https://ojs.arbain.co.id/index.php/side/article/view/6/6

M. Wati, W. H. Rahmah, N. Novirasari, Haviluddin, E. Budiman, and Islamiyah, “Analysis K-Means Clustering to Predicting Student Graduation,” J. Phys. Conf. Ser., vol. 1844, no. 1, pp. 1–8, 2021, doi: 10.1088/1742-6596/1844/1/012028.

T. Wahyudi and T. Silfia, “Implementation of Data Mining Using K-Means Clustering Method To Determine Sales Strategy in S&R Baby Store,” J. Appl. Eng. Technol. Sci., vol. 4, no. 1, pp. 93–103, 2022, doi: 10.37385/jaets.v4i1.913.

R. Vankayalapati, K. B. Ghutugade, R. Vannapuram, and B. P. S. Prasanna, “K-means algorithm for clustering of learners performance levels using machine learning techniques,” Int. Inf. Eng. Technol. Assoc., vol. 35, no. 1, pp. 99–104, 2021, doi: 10.18280/ria.350112.

S. N. Wahyuni, N. N. Khanom, and Y. Astuti, “K-Means Algorithm Analysis for Election Cluster Prediction,” Int. J. Informatics Vis., vol. 7, no. 1, pp. 1–6, 2023, doi: 10.30630/joiv.7.1.1107.

M. A. Saputra and S. Harini, “Java Island Health Profile Clustering using K-Means Data Mining,” Int. J. Inf. Commun. Technol., vol. 8, no. 1, pp. 1–9, 2022, doi: 10.21108/ijoict.v8i1.606.

M. F. J. Muttaqin, “Cluster Analysis Using K-Means Method to Classify Sumatera Regency and City Based on Human Development Index Indicator,” Semin. Nas. Off. Stat., vol. 2022, no. 1, pp. 967–976, 2022, doi: 10.34123/semnasoffstat.v2022i1.1299.

S. Kriˇzanic, “Educational data mining using cluster analysis and decision tree technique : A case study,” Int. J. Eng. Bus. Manag., vol. 12, pp. 1–9, 2020, doi: 10.1177/1847979020908675.

M. Al Ghifari and W. T. H. Putri, “Clustering Courses Based On Student Grades Using K-Means Algorithm With Elbow Method For Centroid Determination,” Inf. J. Ilm. Bid. Teknol. Inf. dan Komun., vol. 8, no. 1, pp. 42–46, 2023, doi: 10.25139/inform.v8i1.4519.

H. Hasanah, N. A. Sudibyo, and R. M. Galih, “Data Mining Using K-Means Clustering Algorithm for Grouping Countries of Origin of Foreign Tourist,” Basic Appl. Sci. Conf., vol. 2021, pp. 88–94, 2021, doi: 10.11594/ nstp.2021.1112.

L. Restuono, A. P. U. Siahaan, R. F. Wijaya, Z. Sitorus, and M. Iqbal, “International Journal of Computer Sciences and Mathematics Engineering Analysis and Exploration of Clustering Algorithms for New Student Segmentation,” Int. J. Comput. Sci. Math. Eng., vol. 3, no. 1, 2024, doi: https://doi.org/10.61306/ijecom.v3i1.61.

A. J. E. Sakalessy and H. D. Purnomo, “Assessing Employee Performance in the Information Technology Department Using K-Means Clustering: A Case Study Approach,” J. Inf. Syst. Informatics, vol. 6, no. 1, pp. 170–186, 2024, doi: 10.51519/journalisi.v6i1.653.

O. W. B. Jnr, “K- Means, Clustering Algorithm for Student’s Selection and Performance Prediction,” Int. J. Sci. Technol. Res., vol. 10, no. 10, pp. 35–39, 2021, [Online]. Available: https://www.ijstr.org/final-print/oct2021/K-means-Clustering-Algorithm-For-Students-Selection-And-Performance-Prediction.pdf

Zuliani, R. Buaton, and S. Ramadani, “Student Character Grouping Based on Six Dimensions of Pancasila Student Profile Using Clustering Method (Case Study of SMK Swasta Setia Budi Binjai),” Int. J. Informatics, Econ. Manag. Sci., vol. 2, no. 2, pp. 130–140, 2023, doi: 10.52362/ijiems.v2i2.1202.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.