Abstract
Monkeypox has a risk of growing into a global threat. Understanding public sentiments is crucial for effective emergency responses, as it helps counter misinformation, enhance communication, and improve the retention and application of public health information. This systematic review of literature aims to provide foundations for identifying existing algorithms, commonly used data collection methods, and pre-processing techniques applied to Twitter discussions on Mpox. The review followed the PRISMA guidelines. Relevant literature was retrieved from ScienceDirect, IEEE, PubMed, and Springer databases, resulting in 15 studies that met the inclusion criteria. Most preprocessing methods include stop word removal, lemmatisation, and tokenisation; commonly used data collection methods include Twitter API, Academic API V2, Snscrape, Twint, and Tweepy. Classification of sentiment tended to be hybrid models like CNN-LSTM or transformer-based models such as BERT, which also perform well in dealing with complex linguistic patterns. These recent models, additionally, addressed other very important issues like misinformation detection, irony, and bot-generated content, which earlier models would often fail to tackle. Despite these advancements, much work still needs to be done in improving the accuracy, generalizability, and interpretability of sentiment analysis models in live monitoring of public health.
References
B. Ncube, M. Dzikiti, A. Nyoni, M. Ncube, B. Mutunhu Ndlovu, and S. Dube, “Effectiveness of Machine Learning algorithms in predicting Monkey Pox (Mpox): A Systematic Literature Review,” in Proceedings of the International Conference on Industrial Engineering and Operations Management, Michigan, USA: IEOM Society International, Jul. 2024. doi: 10.46254/EU07.20240072.
WHO, “Multi-country outbreak of mpox,” Jun. 2024.
K. K. Mohbey, G. Meena, S. Kumar, and K. Lokesh, “A CNN-LSTM-Based Hybrid Deep Learning Approach for Sentiment Analysis on Monkeypox Tweets,” New Gener Comput, vol. 42, no. 1, pp. 89–107, Mar. 2024, doi: 10.1007/s00354-023-00227-0.
R. Olusegun, T. Oladunni, H. Audu, Y. A. O. Houkpati, and S. Bengesi, “Text Mining and Emotion Classification on Monkeypox Twitter Dataset: A Deep Learning-Natural Language Processing (NLP) Approach,” IEEE Access, vol. 11, pp. 49882–49894, 2023, doi: 10.1109/ACCESS.2023.3277868.
T. Alqurashi, “0292 www.etasr.com Alqurashi: Arabic Sentiment Analysis for Twitter Data: A Systematic Literature Review Arabic Sentiment Analysis for Twitter Data: A Systematic Literature Review,” 2023. [Online]. Available: www.etasr.com
Y. Wang, “Sentiment Analysis in Analyzing Monkeypox-Related Tweets Based on Deep Learning,” in Proceedings of the 1st International Conference on Engineering Management, Information Technology and Intelligence, SCITEPRESS - Science and Technology Publications, 2024, pp. 215–220. doi: 10.5220/0012923200004508.
A. Yazdani, M. Shamloo, M. Khaki, and A. Nahvijou, “Use of sentiment analysis for capturing hospitalized cancer patients’ experience from free-text comments in the Persian language,” BMC Med Inform Decis Mak, vol. 23, no. 1, Dec. 2023, doi: 10.1186/s12911-023-02358-2.
J. Mantik et al., “Analysis of twitter user sentiment on the monkeypox virus issue using the nrc lexicon,” Online, 2023.
M. Doifode and D. Vidya, “IJCRT24A3076,” no. 3 March 2024, pp. 1–5, Mar. 2024.
N. Thakur, “Sentiment Analysis and Text Analysis of the Public Discourse on Twitter about COVID-19 and MPox,” Big Data and Cognitive Computing, vol. 7, no. 2, Jun. 2023, doi: 10.3390/bdcc7020116.
N. Thakur, “Sentiment Analysis and Text Analysis of the Public Discourse on Twitter about COVID-19 and MPox,” Big Data and Cognitive Computing, vol. 7, no. 2, Jun. 2023, doi: 10.3390/bdcc7020116.
V. S. Dsouza et al., “A sentiment and content analysis of tweets on monkeypox stigma among the LGBTQ+ community: A cue to risk communication plan,” Dialogues in Health, vol. 2, Dec. 2023, doi: 10.1016/j.dialog.2022.100095.
P. Rajkhowa et al., “Factors Influencing Monkeypox Vaccination: A Cue to Policy Implementation,” J Epidemiol Glob Health, vol. 13, no. 2, 2023, doi: 10.1007/s44197-023-00100-9.
V. S. Dsouza et al., “A sentiment and content analysis of tweets on monkeypox stigma among the LGBTQ+ community: A cue to risk communication plan,” Dialogues in Health, vol. 2, Dec. 2023, doi: 10.1016/j.dialog.2022.100095.
K. K. Agustiningsih, E. Utami, and H. Al Fatta, “Sentiment Analysis of COVID-19 Vaccine on Twitter Social Media: Systematic Literature Review,” in Proceedings - 2021 IEEE 5th International Conference on Information Technology, Information Systems and Electrical Engineering: Applying Data Science and Artificial Intelligence Technologies for Global Challenges During Pandemic Era, ICITISEE 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 121–126. doi: 10.1109/ICITISEE53823.2021.9655960.
A. Albladi, M. Islam, and C. Seals, “Sentiment Analysis of Twitter data using NLP Models: A Comprehensive Review,” IEEE Access, 2025, doi: 10.1109/ACCESS.2025.3541494.
A. Ligthart, C. Catal, and B. Tekinerdogan, “Systematic reviews in sentiment analysis: a tertiary study,” Artif Intell Rev, vol. 54, no. 7, pp. 4997–5053, Oct. 2021, doi: 10.1007/s10462-021-09973-3.
M. Qorib, T. Oladunni, M. Denis, E. Ososanya, and P. Cotae, “Covid-19 vaccine hesitancy: Text mining, sentiment analysis and machine learning on COVID-19 vaccination Twitter dataset,” Expert Syst Appl, vol. 212, Feb. 2023, doi: 10.1016/j.eswa.2022.118715.
O. Iparraguirre-Villanueva et al., “The Public Health Contribution of Sentiment Analysis of Monkeypox Tweets to Detect Polarities Using the CNN-LSTM Model,” Vaccines (Basel), vol. 11, no. 2, Feb. 2023, doi: 10.3390/vaccines11020312.
S. Bengesi, T. Oladunni, R. Olusegun, and H. Audu, “A Machine Learning-Sentiment Analysis on Monkeypox Outbreak: An Extensive Dataset to Show the Polarity of Public Opinion From Twitter Tweets,” IEEE Access, vol. 11, pp. 11811–11826, 2023, doi: 10.1109/ACCESS.2023.3242290.
D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement,” International Journal of Surgery, vol. 8, no. 5, pp. 336–341, 2010, doi: 10.1016/j.ijsu.2010.02.007.
L. Xiu-Xia, Z. Ya, C. Yao-Long, Y. Ke-Hu, and Z. Zong-Jiu, “The reporting characteristics and methodological quality of Cochrane reviews about health policy research,” Apr. 01, 2015, Elsevier Ireland Ltd. doi: 10.1016/j.healthpol.2014.09.002.
T. Grammatopoulos, J. W. S. Hunter, Z. Munn, J. C. Stone, and T. H. Barker, “Reporting quality and risk of bias in JBI systematic reviews evaluating the effectiveness of interventions: A methodological review protocol,” Jan. 13, 2023, Lippincott Williams and Wilkins. doi: 10.11124/JBIES-22-00317.
J. M. Campbell, S. Kavanagh, R. Kurmis, and Z. Munn, “Systematic Reviews in Burns Care: Poor Quality and Getting Worse,” 2017, Lippincott Williams and Wilkins. doi: 10.1097/BCR.0000000000000409.
N. R. Haddaway, M. J. Page, C. C. Pritchard, and L. A. McGuinness, “PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis,” Campbell Systematic Reviews, vol. 18, no. 2, Jun. 2022, doi: 10.1002/cl2.1230.
A. P. Siddaway, A. M. Wood, and L. V Hedges, “How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses,” Annu. Rev. Psychol, vol. 70, pp. 747–770, 2019, doi: 10.1146/annurev-psych-010418.
E. Navori, “Using Natural Language Processing to Understand the Political Perception of Disease: a case study on Ebola, Monkeypox (Mpox), and Zika,” 2023.
Q. X. Ng, C. E. Yau, Y. L. Lim, L. K. T. Wong, and T. M. Liew, “Public sentiment on the global outbreak of monkeypox: an unsupervised machine learning analysis of 352,182 twitter posts,” Public Health, vol. 213, pp. 1–4, Dec. 2022, doi: 10.1016/j.puhe.2022.09.008.
P. Sv and R. Ittamalla, “What concerns the general public the most about monkeypox virus? – A text analytics study based on Natural Language Processing (NLP),” Travel Med Infect Dis, vol. 49, Sep. 2022, doi: 10.1016/j.tmaid.2022.102404.
S. Albahli and M. Nawaz, “TSM-CV: Twitter Sentiment Analysis for COVID-19 Vaccines Using Deep Learning,” Electronics (Switzerland), vol. 12, no. 15, Aug. 2023, doi: 10.3390/electronics12153372.
R. Marcec and R. Likic, “Using Twitter for sentiment analysis towards AstraZeneca/Oxford, Pfizer/BioNTech and Moderna COVID-19 vaccines,” Postgrad Med J, vol. 98, no. 1161, pp. 544–550, Jul. 2022, doi: 10.1136/postgradmedj-2021-140685.
A. A. Reshi et al., “COVID-19 Vaccination-Related Sentiments Analysis: A Case Study Using Worldwide Twitter Dataset,” Healthcare (Switzerland), vol. 10, no. 3, Mar. 2022, doi: 10.3390/healthcare10030411.
K. Garcia and L. Berton, “Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA,” Appl Soft Comput, vol. 101, Mar. 2021, doi: 10.1016/j.asoc.2020.107057.
A. Ameur, S. Hamdi, and S. Ben Yahia, “Sentiment Analysis for Hotel Reviews: A Systematic Literature Review,” ACM Comput Surv, vol. 56, no. 2, Feb. 2023, doi: 10.1145/3605152.
Syaiful Imron, E. I. Setiawan, Joan Santoso, and Mauridhi Hery Purnomo, “Aspect Based Sentiment Analysis Marketplace Product Reviews Using BERT, LSTM, and CNN,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 3, pp. 586–591, Jun. 2023, doi: 10.29207/resti.v7i3.4751.
M. El Azzouzi et al., “Automatic de-identification of French electronic health records: a cost-effective approach exploiting distant supervision and deep learning models,” BMC Med Inform Decis Mak, vol. 24, no. 1, Dec. 2024, doi: 10.1186/s12911-024-02422-5.
J. Kunsabo and J. Dobša, “A Systematic Literature Review on Topic Modelling and Sentiment Analysis,” Sep. 2022.
K. Barik and S. Misra, “Analysis of customer reviews with an improved VADER lexicon classifier,” J Big Data, vol. 11, no. 1, Dec. 2024, doi: 10.1186/s40537-023-00861-x.
R. Hernández-Pérez, P. Lara-Martínez, B. Obregón-Quintana, L. S. Liebovitch, and L. Guzmán-Vargas, “Correlations and Fractality in Sentence-Level Sentiment Analysis Based on VADER for Literary Texts,” Information (Switzerland), vol. 15, no. 11, Nov. 2024, doi: 10.3390/info15110698.
W. Aljedaani et al., “Sentiment analysis on Twitter data integrating TextBlob and deep learning models: The case of US airline industry,” Knowl Based Syst, vol. 255, Nov. 2022, doi: 10.1016/j.knosys.2022.109780.
B. Ondara, S. Waithaka, J. Kandiri, and L. Muchemi, “Machine Learning Techniques, Features, Datasets, and Algorithm Performance Parameters for Sentiment Analysis: A Systematic Review,” Open Journal for Information Technology, vol. 5, no. 1, pp. 1–16, Jul. 2022, doi: 10.32591/coas.ojit.0501.01001o.
P. W. Hardjita, Nurochman, and R. Hidayat, “Sentiment Analysis of Tweets on Prakerja Card using Convolutional Neural Network and Naive Bayes,” IJID (International Journal on Informatics for Development), vol. 10, no. 2, pp. 82–91, Jan. 2022, doi: 10.14421/ijid.2021.3007.
A. M. Alayba, V. Palade, M. England, and R. Iqbal, “Arabic Language Sentiment Analysis on Health Services.”
N. W. C. Mukura and B. Ndlovu, “Performance Evaluation of Artificial Intelligence in Decision Support System for Heart Disease Risk Prediction,” 2023.
E. Mankolli, “Reducing the complexity of candidate selection using Natural Language Processing,” in International Conference on Systems, Signals, and Image Processing, IEEE Computer Society, 2022. doi: 10.1109/IWSSIP55020.2022.9854488.
R. H. Hama Aziz and N. Dimililer, “SentiXGboost: enhanced sentiment analysis in social media posts with ensemble XGBoost classifier,” Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A, vol. 44, no. 6, pp. 562–572, 2021, doi: 10.1080/02533839.2021.1933598.
Y. Handika, I. F. Hanif, and F. N. Hasan, “Analysis of Public Sentiment Towards POLRI’s Performance using Naive Bayes and K-Nearest Neighbors,” IJID (International Journal on Informatics for Development), vol. 13, no. 1, pp. 386–399, Jun. 2024, doi: 10.14421/ijid.2024.4500.
A. Ghallab, A. Mohsen, and Y. Ali, “Arabic Sentiment Analysis: A Systematic Literature Review,” 2020, Hindawi Limited. doi: 10.1155/2020/7403128.
M. Chowdhury, A. Laskar, T. Ahmad, and A. T. Wasi, “MysticCIOL@DravidianLangTech 2025: A Hybrid Framework for Sentiment Analysis in Tamil and Tulu Using Fine-Tuned SBERT Embeddings and Custom MLP Architectures,” 2025.
“JTPES-2024-4-6_3,” Journal of Theory and Practice of Engineering Science, no. Volume 4 Issue6, 2024, Jun. 2024.
M. E. Chatzimina, H. A. Papadaki, C. Pontikoglou, and M. Tsiknakis, “A Comparative Sentiment Analysis of Greek Clinical Conversations Using BERT, RoBERTa, GPT-2, and XLNet,” Bioengineering, vol. 11, no. 6, Jun. 2024, doi: 10.3390/bioengineering11060521.
M. K. Shaik Vadla, M. A. Suresh, and V. K. Viswanathan, “Enhancing Product Design through AI-Driven Sentiment Analysis of Amazon Reviews Using BERT,” Algorithms, vol. 17, no. 2, Feb. 2024, doi: 10.3390/a17020059.
Eleana Jerez-Villota, Graciela Guerrero, and Omar Quimbita, Evaluation and Comparison of Tweppy and Snscrape Libraries for Efficient Data Gathering on X, vol. 1190. in Lecture Notes in Networks and Systems, vol. 1190. Cham: Springer Nature Switzerland, 2024. doi: 10.1007/978-3-031-74825-7.
S. Ong, J. Koo, K. A. Johannson, C. J. Ryerson, and G. C. Goobie, “Content Analysis of Idiopathic Pulmonary Fibrosis-related Information on Twitter,” ATS Sch, vol. 2, no. 4, pp. 576–587, Dec. 2021, doi: 10.34197/ats-scholar.2022-0054OC.
I. S. M. Fadhil, M. H. M. Yusof, I. A. Khalid, S. H. Teoh, and A. A. Almohammedi, “Sentiment analysis comparisons across selected ml models: application on Malaysia online banking twitter data,” in Procedia Computer Science, Elsevier B.V., 2024, pp. 979–988. doi: 10.1016/j.procs.2024.10.326.
R. Olusegun, T. Oladunni, H. Audu, Y. A. O. Houkpati, and S. Bengesi, “Text Mining and Emotion Classification on Monkeypox Twitter Dataset: A Deep Learning-Natural Language Processing (NLP) Approach,” IEEE Access, vol. 11, pp. 49882–49894, 2023, doi: 10.1109/ACCESS.2023.3277868.
P. SV et al., “Twitter-Based Sentiment Analysis and Topic Modeling of Social Media Posts Using Natural Language Processing, to Understand People’s Perspectives Regarding COVID-19 Booster Vaccine Shots in India: Crucial to Expanding Vaccination Coverage,” Vaccines (Basel), vol. 10, no. 11, Nov. 2022, doi: 10.3390/vaccines10111929.
K. Rahul, B. R. Jindal, K. Singh, and P. Meel, “Analysing Public Sentiments Regarding COVID-19 Vaccine on Twitter,” in 2021 7th International Conference on Advanced Computing and Communication Systems, ICACCS 2021, Institute of Electrical and Electronics Engineers Inc., Mar. 2021, pp. 488–493. doi: 10.1109/ICACCS51430.2021.9441693.
P. Sv, J. Tandon, Vikas, and H. Hinduja, “Indian citizen’s perspective about side effects of COVID-19 vaccine – A machine learning study,” Diabetes and Metabolic Syndrome: Clinical Research and Reviews, vol. 15, no. 4, Jul. 2021, doi: 10.1016/j.dsx.2021.06.009.
Azeema Sadia, Fariha Khan, and Fatima Bashir, “An Overview of Lexicon-Based Approach For Sentiment Analysis,” 2018.
S. Tabinda Kokab, S. Asghar, and S. Naz, “Transformer-based deep learning models for the sentiment analysis of social media data,” Array, vol. 14, Jul. 2022, doi: 10.1016/j.array.2022.100157.
E. Gow-Smith, H. T. Madabushi, C. Scarton, and A. Villavicencio, “Improving Tokenisation by Alternative Treatment of Spaces,” Apr. 2022, [Online]. Available: http://arxiv.org/abs/2204.04058
R. Pramana, Debora, J. J. Subroto, A. A. S. Gunawan, and Anderies, “Systematic Literature Review of Stemming and Lemmatization Performance for Sentence Similarity,” in Proceedings of the 2022 IEEE 7th International Conference on Information Technology and Digital Applications, ICITDA 2022, Institute of Electrical and Electronics Engineers Inc., 2022. doi: 10.1109/ICITDA55840.2022.9971451.
A. Habberrih and M. Ali Abuzaraida, “Sentiment Analysis of Libyan Dialect Using Machine Learning with Stemming and Stop-words Removal,” in 5TH INTERNATIONAL CONFERENCE ON COMMUNICATION ENGINEERING AND COMPUTER SCIENCE (CIC-COCOS’24), Cihan University-Erbil, 2024, pp. 259–264. doi: 10.24086/cocos2024/paper.1171.
C. A. Nurhaliza Agustina, R. Novita, Mustakim, and N. E. Rozanda, “The Implementation of TF-IDF and Word2Vec on Booster Vaccine Sentiment Analysis Using Support Vector Machine Algorithm,” in Procedia Computer Science, Elsevier B.V., 2024, pp. 156–163. doi: 10.1016/j.procs.2024.02.162.
M. Kumar, L. Khan, and H.-T. Chang, “Evolving techniques in sentiment analysis: a comprehensive review,” PeerJ Comput Sci, vol. 11, p. e2592, Jan. 2025, doi: 10.7717/peerj-cs.2592.
H. Xu, R. Liu, Z. Luo, and M. Xu, “COVID-19 vaccine sensing: Sentiment analysis and subject distillation from twitter data,” Telematics and Informatics Reports, vol. 8, Dec. 2022, doi: 10.1016/j.teler.2022.100016.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
