Pengaruh metode integrated worked example terhadap kemampuan pemecahan masalah dan cognitive load

Main Article Content

Rizqi Anisa
Endah Retnowati

Abstract

ABSTRAK


Masalah dalam pembelajaran matematika seringkali digunakan untuk melatih kemampuan pemecahan masalah dan disajikan dalam worked example yang memuat komponen gambar, simbol, serta tulisan. Cognitive load theory berfokus menghasilkan desain pembelajaran yang memfasilitasi kemampuan pemecahan masalah peserta didik. Penelitian ini bertujuan untuk mengetahui pengaruh metode integrated worked example dalam pembelajaran statistika terhadap (1) kemampuan pemecahan masalah; (2) tingkat cognitive load selama fase pembelajaran dan fase tes; dengan pendekatan penelitian komparasi antara integrated worked example dan non-intgerated worked example. Jenis penelitian yang digunakan adalah eksperimen kuasi dengan melibatkan 64 peserta didik kelas 8 sebagai partisipan penelitian. Uji hipotesis dalam penelitian ini menggunakan Analysis of Covariate (ANCOVA) dengan nilai signifikansi 0,05. Dengan pengendalian kovariat kemampuan awal sebelum eksperimen, hasil penelitian menunjukkan bahwa metode integrated worked example memberikan pengaruh yang lebih baik ditinjau dari kemampuan pemecahan masalah peserta didik. Ditinjau dari cognitive load, baik selama fase pembelajaran maupun fase tes, metode integrated worked example lebih baik dalam mereduksi cognitive load. Penelitian ini menyimpulkan bahwa penyajian materi pembelajaran harus memperhatikan adanya komponen yang perlu diintegrasikan sehingga memfasilitasi siswa untuk memahami isinya.

Downloads

Download data is not yet available.

Article Details

How to Cite
Anisa, R., & Endah Retnowati. (2024). Pengaruh metode integrated worked example terhadap kemampuan pemecahan masalah dan cognitive load. Jurnal Pengembangan Pembelajaran Matematika, 6(1), 14–26. https://doi.org/10.14421/jppm.2024.61.14-26
Section
Articles

References

Ariyanto, R. O., Mardiyana, & Siswanto. (2020). Characteristics of mathematics high order thinking skill problems levels. Journal of physics: Conference series, 1470(1), 1-10. https://doi.org/10.1088/1742-6596/1470/1/012012

Azizah, N., & Retnowati, E. (2017). Desain worked example untuk mengajarkan matematika pada siswa disabilitas netra. In Seminar Matematika Dan Pendidikan Matematika UNY (pp. 517-524).

Chen, O. (2016). The worked example effect, the generation effect, and element interactivity (Doctoral thesis, University of New South Wales, New South Wales, Australia).

Derry, S. J. (1989). Strategy and expertise in solving word problems. Cognitive Strategy Research: From Basic to Educational Application, 269-301.

Dick, W., Carey, L., Carey, J. (2015). The systematic design of instruction (8th ed). Pearson Education.

Fatqurhohman. (2016). Pemahaman konsep matematika siswa dalam menyelesaikan masalah bangun datar. Jurnal Ilmiah Pendidikan Matematika (JIPM), 4(2), 127-133. http://doi.org/10.25273/jipm.v4i2.847

Firmansyah, D., & Dede. (2022). Teknik pengambilan sampel umum dalam metodologi penelitian: Literature review. Jurnal Ilmiah Pendidikan Holistik (JIPH), 1(2), 85–114. https://doi.org/10.55927/jiph.v1i2.937

Ginns, P., & Leppink, J. (2019). Special issue on cognitive load theory: Editorial. Educational Psychology, 255-259. https://doi.org/10.1007/s10648-019-09474-4

Hanham, J., Leahy, W., & Sweller, J. (2017). Cognitive load theory, element interactivity, and the testing and reverse testing effects. Cognitive Psychology, 1-16.

Irwansyah, M., & Retnowati, E. (2019). Efektivitas worked example dengan strategi pengelompokan siswa ditinjau dari kemampuan pemecahan masalah dan cognitive load. Jurnal Riset Pendidikan Matematika, 6(1), 62-74. https://doi.org/10.21831/jrpm.v6i1.21452

Jalani, N. H., & Sern, L. C. (2015). The example-problem-based learning model: Applying cognitive load theory. Procedia Social and Behavioral Sciencess, 872-880. https://doi.org/10.1016/j.sbspro.2015.06.366

Kalyuga, S. & Liu, T. C. (2015). Guest editorial: Managing cognitive load in technology-based learning environments. Educational Technology & Society, 18(4), 1–8. http://www.jstor.org/stable/jeductechsoci.18.4.1

Kalyuga, S. (2011). Informing: A cognitive load perspective. Informing Science: The International Journal of an Emerging Transdiscipline, 33-45.

Klepsch, M., & Seufert, T. (2020). Understanding instructional design efects by diferentiated measurement of intrinsic, extraneous, and germane cognitive load. Instructional Science, 1-33.

Mayer, R. E. (2009). Multimedia learning. Cambridge University Press.

Noren, A., & Lindholm, D. (2022). How spatial split-attention effects in multimedia relate to cognitive load and visuospatial capabilities (Bachelor Thesis, LUNDS Universitet). https://lup.lub.lu.se/luur/

Orru, G., & Longo, l. (2019). The evolution of cognitive load theory and the measurement of its intrinsic, extraneous and germane loads: A review. Human Mental Workload: Models and Applications, 23-48.

Pangesti, F. T., & Retnowati, E. (2017). Pengembangan bahan ajar geometri SMP berbasis cognitive load theory berorientasi pada prestasi belajar siswa. PYTHAGORAS: Jurnal Pendidikan Matematika, 33-46.

Retnowati, E., Ayres, P., & Sweller, J. (2010). Worked example effects in individual and group work settings. Educational Psychology, 349-367.

Retnowati, E., Ayres, P., & Sweller, J. (2018). Collaborative learning effects when students have complete or incomplete knowledge. Cognitive Psychology, 681-692.

Retnowati, E., & Fadlila, N. (2023). The compound area of quadrilaterals and triangles: a worked example based learning design. JATM (Jurnal Teori dan Aplikasi Matematika), 7(1), 150-159. https://doi.org/10.31764/jtam.v7i1.11678

Rosli, R., Goldsby, D., & Capraro, M. M. (2013). Assessing students' mathematical problem-solving and problem-posing skills. Canadian Center of Science and Education, 54-60. http://dx.doi.org/10.5539/ass.v9n16p54

Sumintono, B., & Widhiarso, W. (2014). Aplikasi model rasch untuk penelitian ilmu-ilmu sosial. Cimahi: Trim Komunikata Publishing House.

Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. Springer Science+Business Media, LLC.

Sweller, J., van Merriënboer, J. J., Paas, & Fred. (2019). Cognitive architecture and instructional design: 20 years later. Educational Psychology, 261-292.

Sweller, J. (2020). Cognitive load theory and educational technology. Educational Technology Research and Development, 1-16. https://doi.org/10.1007/s11423-019-09701-3

Tindall-Ford, S., Agostinho, S., Bokosmaty, S., Paas, F., & Chandler, P. (2015). Computer-based learning of geometry from integrated and split attention worked example: The power of self-management. Educational Technology & Society, 18(4), 89-99.

Walpole, R. E. (1982). Introduction to statistics (3rd ed.). Macmillan Publishing.

Widodo, S. A., Darhim, & Ikhwanudin, T. (2018). Improving mathematical problem solving skills through visual media. Journal of Physics, 1-7.

Widyastuti, B. W., & Retnowati, E. (2021). Effects of worked example on experts’ procedural skills in solving geometry problems. Proceedings of the 7th International Conference on Research, Implementation, and Education of Mathematics and Sciences (ICRIEMS 2020), 528(Icriems 2020), 338–343. https://doi.org/10.2991/assehr.k.210305.049