Prediksi Barang Keluar TB. Wijaya Bangunan Menggunakan Algoritma KNN Regression dengan RStudio

Authors

  • Natcha Kwintarini Suparman Universitas Singaperbangsa Karawang
  • Budi Arif Dermawan Universitas Singaperbangsa Karawang
  • Tesa Nur Padilah Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.14421/jiska.2021.6.2.90-97

Abstract

TB. Wijaya Bangunan is a business entity that has weaknesses in managing inventories. This study aims to help TB. Wijaya Bangunan in managing inventory based on existing data reduce the difference between the number of incoming goods and the number of outgoing goods. The methods used are data collection, data preparation, data selection, preprocessing, data transformation, distance calculation, calculation of predictions, evaluation, and display of prediction results using a Shiny framework. This study uses the Time Series KNN Regression algorithm to predict the number of outgoing goods based on time series data with existing data. The most predicted results came out in the 9th week period as much as 22.40%. Based on the process that has been done, it can be concluded that the evaluation value of Root Mean Square Error (RMSE) is at least 3.55, which means it has the best predictive accuracy results.

References

Altunsöğüt, Ö., Uçar, E., & Kılıçaslan, Y. (2018). PREDICTING THE AMOUNT OF WASTAGE OF FINISHED GOODS IN TEXTILE DYEING FACTORIES. International Scientific Conference “UNITECH 2018,” 248–288.

Bode, A. (2017). K-NEAREST NEIGHBOR DENGAN FEATURE SELECTION MENGGUNAKAN BACKWARD ELIMINATION UNTUK PREDIKSI HARGA KOMODITI KOPI ARABIKA. ILKOM Jurnal Ilmiah, 9(2), 188–195. https://doi.org/10.33096/ilkom.v9i2.139.188-195

Fatkhuroji, F., Santosa, S., & Pramunendar, R. A. (2019). PREDIKSI HARGA KEDELAI LOKAL DAN KEDELAI IMPOR DENGAN METODE SUPPORT VECTOR MACHINE BERBASIS FORWARD SELECTION. Jurnal Teknologi Informasi, 15(1), 61–76.

Hamdi, A., Indriani, F., & Muliadi, M. (2019). METODE TIMESERIES K-NEAREST NEIGHBOR REGRESSION DALAM PREDIKSI BARANG KELUAR PADA GUDANG PT PUTRA PRENUER BANJARBARU. Seminar Nasional Ilmu Komputer (SOLITER), 2, 37–45.

Indani, & Suhairi, L. (2018). Pengelolaan Usaha Boga Edisi II (2 ed.). Syiah Kuala University Press.

Lestari, S. I. P., Andriani, M., GS, A. D., Subekti, P., & Kurniawati, R. (2019). Peramalan Stok Spare Part Menggunakan Metode Least Square. SEFA BUMI PERSADA.

Mahena, Y., Rusli, M., & Winarso, E. (2015). Prediksi Harga Emas Dunia Sebagai Pendukung Keputusan Investasi Saham Emas Menggunakan Teknik Data Mining. Kalbiscentia Jurnal Sains dan Teknologi, 2(1), 36–51.

Martínez, F., Frías, María, P., Charte, F., & Rivera, Antonio, J. (2019). Time Series Forecasting with KNN in R: the tsfknn Package. The R Journal, 11(2), 229. https://doi.org/10.32614/RJ-2019-004

Mustakim, M., & Oktaviani, G. (2016). Algoritma K-Nearest Neighbor Classification Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa. Jurnal Sains, Teknologi, dan Industri, 13(2), 195–202. https://doi.org/10.24014/sitekin.v13i2.1688

Nanja, M., & Purwanto, P. (2015). METODE K-NEAREST NEIGHBOR BERBASIS FORWARD SELECTION UNTUK PREDIKSI HARGA KOMODITI LADA. Pseudocode, 2(1), 53–64. https://doi.org/10.33369/pseudocode.2.1.53-64

Nofriansyah, D. (2014). Konsep Data Mining vs Sistem Pendukung Keputusan (1 ed.). Deepublish.

Putra, S. H., & Putra, B. T. (2018). Klasifikasi Harga Cell Phone menggunakan Metode K-Nearest Neighbor (KNN). Prosiding Annual Research Seminar, 4(1), 242–245.

Sabilla, W. I., & Putri, T. E. (2017). Prediksi Ketepatan Waktu Lulus Mahasiswa dengan k-Nearest Neighbor dan Naïve Bayes Classifier (Studi Kasus Prodi D3 Sistem Informasi Universitas Airlangga). Jurnal Komputer Terapan, 3(2), 233–240.

Sartika, E. (2019). Analisis Metode K Nearest Neighbor Imputation (KNNI) Untuk Mengatasi Data Hilang Pada Estimasi Data Survey. Jurnal TEDC, 12(3), 219–227.

Wijaya, A., & Ananta, W. P. (2017). Hukum Bisnis Properti Indonesia. Grasindo.

Downloads

Published

2021-05-03

How to Cite

Suparman, N. K., Dermawan, B. A., & Padilah, T. N. (2021). Prediksi Barang Keluar TB. Wijaya Bangunan Menggunakan Algoritma KNN Regression dengan RStudio. JISKA (Jurnal Informatika Sunan Kalijaga), 6(2), 90–97. https://doi.org/10.14421/jiska.2021.6.2.90-97

Issue

Section

Articles