Metode Accumulative Difference Images untuk Mendeteksi Berhentinya Putaran Kincir Air
DOI:
https://doi.org/10.14421/jiska.2021.6.2.98-105Abstract
Vannamei shrimp is one of Indonesia's fishery commodities with great potential to be developed. One of the essential things in shrimp farming is a source of dissolved oxygen (DO) or a sufficient amount of oxygen content, which can be maintained by placing a waterwheel driven by a generator set engine called a generator. To keep the waterwheel running, the cultivators must continue to monitor it in real-time. Based on these problems, we need a method that can be used to detect the cessation of waterwheel rotation in shrimp ponds that focuses on the rotation of the waterwheel. This study aims to analyze the performance of the Accumulative Difference Images (ADI) method to detect the stopped waterwheel-spinning. This method was chosen because compared with the method that only compares the differences between two frames in each process, the ADI method is considered to reduce the error-rate. After all, it is taken from the results of the value of several frames' accumulated movement. The ADI method's application to detect the stopped waterwheel-spinning gives an accuracy of 95.68%. It shows that the ADI method can be applied to detect waterwheels' stop in shrimp ponds with a very good accuracy value.
References
Dawson-Howe, K. (2014). A Practical Introduction to Computer Vision with OpenCV. Wiley.
Gonzalez, R. C., & Woods, R. E. (2018). Digital Image Processing (4th ed). Pearson.
H.Kordi, M. G., & Tancung, A. B. (2007). Pengelolaan Kualitas Air Dalam Budidaya Perairan. PT Rineka Cipta.
Harry, M., Pratama, B., Hidayatno, A., Ajub, D., & Zahra, A. (2017). APLIKASI DETEKSI GERAK PADA KAMERA KEAMANAN MENGGUNAKAN METODE BACKGROUND SUBTRACTION DENGAN ALGORITMA GAUSSIAN MIXTURE MODEL. In Transient: Jurnal Ilmiah Teknik Elektro (Vol. 6, Nomor 2). Universitas Diponegoro. https://doi.org/10.14710/TRANSIENT.6.2.246-253
Mardhiya, I. R., Surtono, A., & Suciyati, S. W. (2018). Sistem Akuisisi Data Pengukuran Kadar Oksigen Terlarut Pada Air Tambak Udang Menggunakan Sensor Dissolved Oxygen (DO). Jurnal Teori dan Aplikasi Fisika, 6(1), 133–140. https://doi.org/10.23960/JTAF.V6I1.1836
Martín, E. M., & Pobil, Á. P. del. (2012). Robust Motion Detection in Real-Life Scenarios (1 ed.). Springer-Verlag London. https://doi.org/10.1007/978-1-4471-4216-4
Maulana, Y. Y., Wiranto, G., & Kurniawan, D. (2017). Online Monitoring Kualitas Air pada Budidaya Udang Berbasis WSN dan IoT. INKOM Journal, 10(2), 81–86. https://doi.org/10.14203/J.INKOM.456
Mohammad Faisal Kholid, Jian Budiarto, Ahmad Ashril Rizal, & Gibran Satya Nugraha. (2020). HUMAN MOVEMENT DETECTION DENGAN ACCUMULATIVE DIFFERENCES IMAGE. TEKNIMEDIA: Teknologi Informasi dan Multimedia, 1(1), 1–7. https://doi.org/10.46764/teknimedia.v1i1.7
Multazam, A. E., & Hasanuddin, Z. B. (2017). Sistem Monitoring Kualitas Air Tambak Udang Vaname. JURNAL IT Media Informasi STMIK Handayani Makassar, 8(2), 118–125.
Musrowati Lasindrang, L. S. N. K. (2015). KAJIAN SEBARAN POTENSI EKONOMI SUMBER DAYA. Jurnal Teknosains, 4(2), 101–198. https://doi.org/10.22146/teknosains.7953
Nguyen Tang Kha Duy, Nguyen Dinh Tu, Tra Hoang Son, & Luong Hong Duy Khanh. (2015). Automated monitoring and control system for shrimp farms based on embedded system and wireless sensor network. 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), 1–5. https://doi.org/10.1109/ICECCT.2015.7226111
Nguyen Tang Kha Duy, Tran Trong Hieu, & Luong Hong Duy Khanh. (2015). A versatile, low poweron monitoring and control system for shrimp farms based on NI myRIOand ZigBee network. 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), 0282–0287. https://doi.org/10.1109/ICCPEIC.2015.7259476
Nugraha, N. P. A., Agus, M., & Mardiana, T. Y. (2017). REKAYASA KINCIR AIR PADA TAMBAK LDPE UDANG VANNAMEI (Litopenaeus vannamei) DI TAMBAK UNIKAL SLAMARAN. Pena Akuatika : Jurnal Ilmiah Perikanan dan Kelautan, 16(1). https://doi.org/10.31941/PENAAKUATIKA.V16I1.527
Nurhopipah, A., & Harjoko, A. (2018). Motion Detection and Face Recognition for CCTV Surveillance System. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 12(2), 107. https://doi.org/10.22146/ijccs.18198
Pratama, A. S., Efendi, A. H., Burhanudin, D., & Rofiq, M. (2019). Simkartu (Sistem Monitoring Kualitas Air Tambak Udang) Berbasis Arduino dan SMS Gateway. Jurnal SITECH : Sistem Informasi dan Teknologi, 2(1), 121–126. https://doi.org/10.24176/sitech.v2i1.3498
Priadana, A., & Harjoko, A. (2017). Deteksi Perubahan Citra Pada Video Menggunakan Illumination Invariant Change Detection. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 11(1), 89–98. https://doi.org/10.22146/ijccs.17526
Rahmawati, L., & Nugroho, H. (2018). Deteksi Gerak Pada Citra Objek Video Surveillance Dengan Menggunakan Metode Spektral Residual. INTEGER: Journal of Information Technology, 3(1). https://doi.org/10.31284/j.integer.2018.v3i1.219
Ramadhan, D. I., Sari, I. P., & Sari, L. O. (2018). COMPARISON OF BACKGROUND SUBTRACTION, SOBEL, ADAPTIVE MOTION DETECTION, FRAME DIFFERENCES, AND ACCUMULATIVE DIFFERENCES IMAGES ON MOTION DETECTION. SINERGI, 22(1), 51. https://doi.org/10.22441/sinergi.2018.1.009
Rerkratn, A., & Kaewpoonsuk, A. (2015). ZigBee based wireless temperature monitoring system for shrimp farm. 2015 15th International Conference on Control, Automation and Systems (ICCAS), 428–431. https://doi.org/10.1109/ICCAS.2015.7364953
Saubari, N., Gazali, M., & Ansari, R. (2019). Metode HLF untuk Deteksi Objek Terapung pada Permukaan Sungai Martapura. JISKA (Jurnal Informatika Sunan Kalijaga), 4(2), 43. https://doi.org/10.14421/jiska.2019.42-06
Sneha, P. S., & Rakesh, V. S. (2017). Automatic monitoring and control of shrimp aquaculture and paddy field based on embedded system and IoT. 2017 International Conference on Inventive Computing and Informatics (ICICI), 1085–1089. https://doi.org/10.1109/ICICI.2017.8365307
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Adri Priadana, Aris Wahyu Murdiyanto
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.