Pemanfaatan Network Forensic Investigation Framework untuk Mengidentifikasi Serangan Jaringan Melalui Intrusion Detection System (IDS)
DOI:
https://doi.org/10.14421/jiska.2022.7.1.46-55Keywords:
Network Forensic Investigation Framework, Intrusion Detection System (IDS), Network Attack, Network Scanning, DOS AttacksAbstract
Intrusion Detection System (IDS) is one of the technology to ensure the security of computers. IDS is an early detection system in the event of a computer network attack. The IDS will alert the computer network administrator in the event of a computer network attack. IDS also records all attempts and activities aimed at disrupting computer networks and other computer network attacks. The purpose of this study is to implement IDS on network systems and analyze IDS logs to determine the different types of computer network attacks. Logs on the IDS will be analyzed and will be used as leverage to improve computer network security. The research was carried out using the Network Forensic Investigation Framework proposed by Pilli, Joshi, and Niyogi. The stages of the Network Forensic Investigation Framework are used to perform network simulations, analysis, and investigations to determine the types of computer network attacks. The results show that the Network Forensic Investigation Framework facilitates the investigation process when a network attack occurs. The Network Forensic Investigation Framework is effectively used when the computer network has network security support applications such as IDS or others. IDS is effective in detecting network scanning activities and DOS attacks. IDS gives alerts to administrators because there are activities that violate the rules on the IDS.
References
Alsyaibani, O. M. A., Utami, E., & Hartanto, A. D. (2021). Survey on Deep Learning Based Intrusion Detection System. Telematika, 14(2), 86–100. https://doi.org/10.35671/telematika.v14i2.1317
Alviana, S., & Sumitra, I. D. (2018). Analisis Pengukuran Penggunaan Sumber Daya Komputer pada Intrusion Detection System dalam Meminimalkan Serangan Jaringan. Komputa : Jurnal Ilmiah Komputer Dan Informatika, 7(1), 27–34. https://doi.org/10.34010/komputa.v7i1.2533
Barracuda Networks. (2021). What is an Intrusion Detection System? Barracuda Networks, Inc. https://www.barracuda.com/glossary/intrusion-detection-system
Chowdhury, F. Z., Kiah, L. B. M., Ahsan, M. A. M., & Bin Idris, M. Y. I. (2017). Economic denial of sustainability (EDoS) mitigation approaches in cloud: Analysis and open challenges. 2017 International Conference on Electrical Engineering and Computer Science (ICECOS), 206–211. https://doi.org/10.1109/ICECOS.2017.8167135
Dewi, E. K. (2017). Analisis Log Snort Menggunakan Network Forensic. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 2(2). https://doi.org/10.29100/jipi.v2i2.370
Irina, F. (2017). Metode Penelitian Terapan. (1st ed.). Parama Ilmu.
Iskandar. (2020). Indonesia Dibombardir 88,4 Juta Serangan Siber, Ini Detailnya. Liputan6.Com. https://www.liputan6.com/tekno/read/4235211/indonesia-dibombardir-884-juta-serangan-siber-ini-detailnya
Khaerani, I., & Handoko, B. (2015). Implementasi dan Analisa Hasil Data Mining untuk Klasifikasi Serangan pada Intrusion Detection System (IDS) dengan Algoritma C4. 5. Techno.COM, 14(3), 181–188. https://doi.org/10.33633/tc.v14i3.943
Kumar, D. A. (2017). Intrusion Detection Systems: A Review. International Journal of Advanced Research in Computer Science, 8(8), 356–370. https://doi.org/10.26483/ijarcs.v8i8.4703
Lazzez, A. (2013). A Survey about Network Forensics Tools. International Journal of Computer and Information Technology, 2(1), 2279–2764.
Muhammad, A. W. (2016). Analisis Statistik Log Jaringan untuk Deteksi Serangan DDOS Berbasis Neural Network. ILKOM Jurnal Ilmiah, 8(3), 220–225. https://doi.org/10.33096/ilkom.v8i3.76.220-225
Paramitha, I. A. S. D., Sasmita, G. M. A., & Raharja, I. M. S. (2020). Analisis Data Log IDS Snort dengan Algoritma Clustering Fuzzy C-Means. Majalah Ilmiah Teknologi Elektro, 19(1), 95. https://doi.org/10.24843/MITE.2020.v19i01.P14
Pilli, E. S., Joshi, R., & Niyogi, R. (2010). A Generic Framework for Network Forensics. International Journal of Computer Applications, 1(11), 1–6. https://doi.org/10.5120/251-408
Purba, W. W., & Efendi, R. (2021). Perancangan dan analisis sistem keamanan jaringan komputer menggunakan SNORT. AITI, 17(2), 143–158. https://doi.org/10.24246/aiti.v17i2.143-158
Sandi, D. V., & Arrofiq, M. (2018). Implementasi Analisis NIDS Berbasis Snort Dengan Metode Fuzy Untuk Mengatasi Serangan LoRaWAN. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 2(3), 685–696. https://doi.org/10.29207/resti.v2i3.504
Singh, R. R., & Tomar, D. S. (2015). Network Forensics: Detection and Analysis of Stealth Port Scanning Attack. International Journal of Computer Networks and Communications Security, 3(2), 33–42.
Suhartono, S., & Patta, A. R. (2017). Sistem Pengamanan Jaringan Admin Server Dengan Metode Intrusion Detection System (IDS) Snort Menggunakan Sistem Operasi ClearOS. Jurnal Teknologi Elekterika, 14(2), 145. https://doi.org/10.31963/elekterika.v14i2.1220
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Tri Widodo, Adam Sekti Aji
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.