Pemanfaatan Network Forensic Investigation Framework untuk Mengidentifikasi Serangan Jaringan Melalui Intrusion Detection System (IDS)

Authors

  • Tri Widodo Universitas Teknologi Yogyakarta
  • Adam Sekti Aji Universitas Teknologi Yogyakarta

DOI:

https://doi.org/10.14421/jiska.2022.7.1.46-55

Keywords:

Network Forensic Investigation Framework, Intrusion Detection System (IDS), Network Attack, Network Scanning, DOS Attacks

Abstract

Intrusion Detection System (IDS) is one of the technology to ensure the security of computers. IDS is an early detection system in the event of a computer network attack. The IDS will alert the computer network administrator in the event of a computer network attack. IDS also records all attempts and activities aimed at disrupting computer networks and other computer network attacks. The purpose of this study is to implement IDS on network systems and analyze IDS logs to determine the different types of computer network attacks. Logs on the IDS will be analyzed and will be used as leverage to improve computer network security. The research was carried out using the Network Forensic Investigation Framework proposed by Pilli, Joshi, and Niyogi. The stages of the Network Forensic Investigation Framework are used to perform network simulations, analysis, and investigations to determine the types of computer network attacks. The results show that the Network Forensic Investigation Framework facilitates the investigation process when a network attack occurs. The Network Forensic Investigation Framework is effectively used when the computer network has network security support applications such as IDS or others. IDS is effective in detecting network scanning activities and DOS attacks. IDS gives alerts to administrators because there are activities that violate the rules on the IDS.

References

Alsyaibani, O. M. A., Utami, E., & Hartanto, A. D. (2021). Survey on Deep Learning Based Intrusion Detection System. Telematika, 14(2), 86–100. https://doi.org/10.35671/telematika.v14i2.1317

Alviana, S., & Sumitra, I. D. (2018). Analisis Pengukuran Penggunaan Sumber Daya Komputer pada Intrusion Detection System dalam Meminimalkan Serangan Jaringan. Komputa : Jurnal Ilmiah Komputer Dan Informatika, 7(1), 27–34. https://doi.org/10.34010/komputa.v7i1.2533

Barracuda Networks. (2021). What is an Intrusion Detection System? Barracuda Networks, Inc. https://www.barracuda.com/glossary/intrusion-detection-system

Chowdhury, F. Z., Kiah, L. B. M., Ahsan, M. A. M., & Bin Idris, M. Y. I. (2017). Economic denial of sustainability (EDoS) mitigation approaches in cloud: Analysis and open challenges. 2017 International Conference on Electrical Engineering and Computer Science (ICECOS), 206–211. https://doi.org/10.1109/ICECOS.2017.8167135

Dewi, E. K. (2017). Analisis Log Snort Menggunakan Network Forensic. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 2(2). https://doi.org/10.29100/jipi.v2i2.370

Irina, F. (2017). Metode Penelitian Terapan. (1st ed.). Parama Ilmu.

Iskandar. (2020). Indonesia Dibombardir 88,4 Juta Serangan Siber, Ini Detailnya. Liputan6.Com. https://www.liputan6.com/tekno/read/4235211/indonesia-dibombardir-884-juta-serangan-siber-ini-detailnya

Khaerani, I., & Handoko, B. (2015). Implementasi dan Analisa Hasil Data Mining untuk Klasifikasi Serangan pada Intrusion Detection System (IDS) dengan Algoritma C4. 5. Techno.COM, 14(3), 181–188. https://doi.org/10.33633/tc.v14i3.943

Kumar, D. A. (2017). Intrusion Detection Systems: A Review. International Journal of Advanced Research in Computer Science, 8(8), 356–370. https://doi.org/10.26483/ijarcs.v8i8.4703

Lazzez, A. (2013). A Survey about Network Forensics Tools. International Journal of Computer and Information Technology, 2(1), 2279–2764.

Muhammad, A. W. (2016). Analisis Statistik Log Jaringan untuk Deteksi Serangan DDOS Berbasis Neural Network. ILKOM Jurnal Ilmiah, 8(3), 220–225. https://doi.org/10.33096/ilkom.v8i3.76.220-225

Paramitha, I. A. S. D., Sasmita, G. M. A., & Raharja, I. M. S. (2020). Analisis Data Log IDS Snort dengan Algoritma Clustering Fuzzy C-Means. Majalah Ilmiah Teknologi Elektro, 19(1), 95. https://doi.org/10.24843/MITE.2020.v19i01.P14

Pilli, E. S., Joshi, R., & Niyogi, R. (2010). A Generic Framework for Network Forensics. International Journal of Computer Applications, 1(11), 1–6. https://doi.org/10.5120/251-408

Purba, W. W., & Efendi, R. (2021). Perancangan dan analisis sistem keamanan jaringan komputer menggunakan SNORT. AITI, 17(2), 143–158. https://doi.org/10.24246/aiti.v17i2.143-158

Sandi, D. V., & Arrofiq, M. (2018). Implementasi Analisis NIDS Berbasis Snort Dengan Metode Fuzy Untuk Mengatasi Serangan LoRaWAN. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 2(3), 685–696. https://doi.org/10.29207/resti.v2i3.504

Singh, R. R., & Tomar, D. S. (2015). Network Forensics: Detection and Analysis of Stealth Port Scanning Attack. International Journal of Computer Networks and Communications Security, 3(2), 33–42.

Suhartono, S., & Patta, A. R. (2017). Sistem Pengamanan Jaringan Admin Server Dengan Metode Intrusion Detection System (IDS) Snort Menggunakan Sistem Operasi ClearOS. Jurnal Teknologi Elekterika, 14(2), 145. https://doi.org/10.31963/elekterika.v14i2.1220

Downloads

Published

2022-01-25

How to Cite

Widodo, T., & Aji, A. S. (2022). Pemanfaatan Network Forensic Investigation Framework untuk Mengidentifikasi Serangan Jaringan Melalui Intrusion Detection System (IDS). JISKA (Jurnal Informatika Sunan Kalijaga), 7(1), 46–55. https://doi.org/10.14421/jiska.2022.7.1.46-55