Aplikasi Prediksi Kelayakan Calon Anggota Kredit pada KSPPS BMT Arta Jiwa Mandiri Wonogiri Menggunakan Algoritma K-Nearest Neighbor
DOI:
https://doi.org/10.14421/jiska.2018.32-03Abstract
An economy that tends to be unstable causes many people to make loans at banks and cooperatives to meet their increasing daily needs. But there are some people who cannot return the loan in a timely manner. These problems can be created or developed by an application that is used to predict whether the people who apply for loans can return loans smoothly, smoothly and stall. Use of attributes such as gender, age, type of work, number of loans, term of return, collateral and income and use the K-Nearest Neighbor algorithm to make predictions. From the research results obtained in the form of accuracy value of 80%, recall of 91% and preciison of 85%. Thus this application can be used to help the pinjman savings cooperative in considering prospective savings and loan credit members who deserve a capital loan.
Keywords: data mining, K Nearest Neighbor, cooperatives, savings and loans.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.