Implementation of Cosine Similarity in an Automatic Classifier for Comments

Authors

DOI:

https://doi.org/10.14421/jiska.2018.32-05

Abstract

Classification of text with a large amount is needed to extract the information contained in it. Student comments containing suggestions and criticisms about the lecturer and the lecture process on the learning evaluation system are not well classified, resulting in a difficult assessment process. So from that, we need a classification model that can classify comments automatically into classification categories. The method used is the Cosine Similarity method, which is a method for calculating similarities between two objects expressed in two vectors. The data used in this study were 1,630 comment data with several different categories. The test in this study uses k-fold cross-validation with k = 10. The results showed that the percentage accuracy of the classification model was 80.87%.

Author Biography

Muhammad Habibi, Universitas Jenderal Achmad Yani Yogyakarta

Teknik Informatika

References

Ahmed, H., Razzaq, M. A., & Qamar, A. M. (2013). Prediction of popular tweets using Similarity Learning. ICET 2013 - 2013 IEEE 9th International Conference on Emerging Technologies. https://doi.org/10.1109/ICET.2013.6743524

Djamarah, & Zain. (2016). Strategi Belajar Mengajar. Jakarta: Rineka Cipta.

Habibi, M. (2017). Analisis Sentimen dan Klasifikasi Komentar Mahasiswa pada Sistem Evaluasi Pembelajaran Menggunakan Kombinasi KNN Berbasis Cosine Similarity dan Supervised Model. Departemen Ilmu Komputer dan Elektronika, Fakultas Matematika dan Ilmu Pengetahuan Alam. Universitas Gadjah Mada.

Haddi, E., Liu, X., & Shi, Y. (2013). The role of text pre-processing in sentiment analysis. Procedia Computer Science, 17, 26–32. https://doi.org/10.1016/j.procs.2013.05.005

Jayakodi, K., Bandara, M., & Meedeniya, D. (2016). An automatic classifier for exam questions with WordNet and Cosine similarity. 2nd International Moratuwa Engineering Research Conference, MERCon 2016, 12–17. https://doi.org/10.1109/MERCon.2016.7480108

Kadhim, A. I., Cheah, Y. N., Ahamed, N. H., & Salman, L. A. (2014). Feature extraction for co-occurrence-based cosine similarity score of text documents. 2014 IEEE Student Conference on Research and Development, SCOReD 2014, 2–5. https://doi.org/10.1109/SCORED.2014.7072954

Lops, P., Gemmis, M. De, & Semeraro, G. (2010). Recommender Systems Handbook. Recommender Systems Handbook. https://doi.org/10.1007/978-0-387-85820-3

Manning, C. D., Raghavan, P., & Schutze, H. (2009). An Introduction to Information Retrieval. Information Retrieval. https://doi.org/10.1109/LPT.2009.2020494

Margono. (2003). Metode Penelitian Pendidikan. Jakarta: Rineka Cipta.

Saipech, P., & Seresangtakul, P. (2018). Automatic Thai Subjective Examination using Cosine Similarity. ICAICTA 2018 - 5th International Conference on Advanced Informatics: Concepts Theory and Applications, 214–218. https://doi.org/10.1109/ICAICTA.2018.8541276

Sebastiani, F. (2002). Machine Learning in Automated Text Categorization. ACM Computing Surveys (CSUR), 34(1), 1–47.

Siqueira, H., & Barros, F. (2010). A Feature Extraction Process for Sentiment Analysis of Opinions on Services. Proceedings of the III International Workshop on Web and Text Intelligence (WTI).

Downloads

Published

2019-06-11

How to Cite

Habibi, M. (2019). Implementation of Cosine Similarity in an Automatic Classifier for Comments. JISKA (Jurnal Informatika Sunan Kalijaga), 3(2), 110–118. https://doi.org/10.14421/jiska.2018.32-05