Implementasi Algoritma K-Means Clustering Seleksi Siswa Berprestasi Berdasarkan Keaktifan dalam Proses Pembelajaran
DOI:
https://doi.org/10.14421/jiska.2022.7.2.111-121Keywords:
Data Mining, Keaktifan Siswa, K-Means, Prediksi Clustering, Davies BouldinAbstract
The learning process through various interactions and learning experiences has a considerable influence on developing student activity to improve the quality of education. The teacher is the most important factor in determining the success of students in the implementation of the process. The development of the quality and activeness of students in learning is a basic element as a form of success in the learning process which of course not all students have a level of speed in understanding material. This is a concern for schools in improving the quality of education. The purpose of this study was to classify the level of activity of students at SMP ABC using the correlation between grades and the level of student activity who would be recommended to take part in competitions or prospective scholarship recipients. The data source that we used in this study came from the State Junior High School ABC which consists of several variables, including student attendance data, academic scores, psychomotor scores, and affective values. The method used in this research is the Clustering method with the K-means Algorithm. The results of this study can be grouped into 3 clusters including cluster 0 indicating active students as many as 30 students, cluster 1 showing inactive students as many as 8 students, and cluster 2 indicating less active students as many as 21 students.
References
Adhitama, R., Burhanuddin, A., & Ananda, R. (2020). Penentuan Jumlah Cluster Ideal SNK di Jawa Tengah dengan Metode X-Means Clustering dan K-Means Clustering. JIKO (Jurnal Informatika Dan Komputer), 3(1), 1–5. https://doi.org/10.33387/jiko.v3i1.1635
Arofah, S. N., & Marisa, F. (2018). Penerapan Data Mining untuk Mengetahui Minat Siswa pada Pelajaran Matematika menggunakan Metode K-Means Clustering. JOINTECS (Journal of Information Technology and Computer Science), 3(2), 85–90. https://doi.org/10.31328/jointecs.v3i2.787
Asroni, A., Fitri, H., & Prasetyo, E. (2018). Penerapan Metode Clustering dengan Algoritma K-Means pada Pengelompokkan Data Calon Mahasiswa Baru di Universitas Muhammadiyah Yogyakarta (Studi Kasus: Fakultas Kedokteran dan Ilmu Kesehatan, dan Fakultas Ilmu Sosial dan Ilmu Politik). Semesta Teknika, 21(1), 60–64. https://doi.org/10.18196/st.211211
Elda, Y., Defit, S., Yunus, Y., & Syaljumairi, R. (2021). Klasterisasi Penempatan Siswa yang Optimal untuk Meningkatkan Nilai Rata-Rata Kelas Menggunakan K-Means. Jurnal Informasi Dan Teknologi, 3, 103–108. https://doi.org/10.37034/jidt.v3i3.130
Fatmawati, K., & Windarto, A. P. (2018). Data Mining: Penerapan RapidMiner dengan K-Means Cluster pada Daerah Terjangkit Demam Berdarah Dengue (DBD) Berdasarkan Provinsi. Computer Engineering, Science and System Journal, 3(2), 173. https://doi.org/10.24114/cess.v3i2.9661
Kusuma, A. S., & Aryati, K. S. (2019). Sistem Informasi Akademik Serta Penentuan Kelas Unggulan Dengan Metode Clusttering Dengan Algoritama K-Means Di Smp Negeri 3 Ubud. Jurnal Sistem Informasi Dan Komputer Terapan Indonesia (JSIKTI), 1(3), 143–152. https://doi.org/10.33173/jsikti.29
Maulida, L. (2018). Penerapan Data Mining dalam Mengelompokkan Kunjungan Wisatawan ke Objek Wisata Unggulan di Prov. DKI Jakarta dengan K-Means. JISKA (Jurnal Informatika Sunan Kalijaga), 2(3), 167. https://doi.org/10.14421/jiska.2018.23-06
Nainggolan, R., & Purba, E. (2020). Cluster Analysis of Online Shop Product Reviews Using K-Means Clustering. IJEBD (International Journal Of Entrepreneurship And Business Development), 3(02), 142–151. https://doi.org/10.29138/ijebd.v3i02.977
Nur Khormarudin, A. (2018). Teknik Data Mining: Algoritma K-Means Clustering. IlmuKomputer.Com. https://ilmukomputer.org/2018/05/08/teknik-data-mining-algoritma-k-means-clustering/
Oktarian, S., Defit, S., & Sumijan. (2020). Clustering Students’ Interest Determination in School Selection Using the K-Means Clustering Algorithm Method. Jurnal Informasi Dan Teknologi, 2, 68–75. https://doi.org/10.37034/jidt.v2i3.65
Ong, J. O. (2013). Implementasi Algoritma K-Means Clustering untuk Menentukan Strategi Marketing President University. Jurnal Ilmiah Teknik Industri, 12(1), 10–20. https://doi.org/10.23917/jiti.v12i1.651
Parlambang, B., & Fauziah. (2020). Implementasi Algoritma K-Means dalam Proses Penilaian Kuesioner kepada Dosen Guna Mendukung Kepuasan Mahasiswa Terhadap Dosen. Jurnal Ilmiah Teknologi Dan Rekayasa, 25(2), 161–173. https://doi.org/10.35760/tr.2020.v25i2.2719
Parlina, I., Windarto, A. P., Wanto, A., & Lubis, M. R. (2018). Memanfaatkan Algoritma K-Means dalam Menentukan Pegawai yang Layak Mengikuti Asessment Center untuk Clustering Program SDP. Computer Engineering, Science and System Journal, 3(1), 87. https://doi.org/10.24114/cess.v3i1.8192
Pham, D. T., Dimov, S. S., & Nguyen, C. D. (2005). Selection of K in K -means clustering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 219(1), 103–119. https://doi.org/10.1243/095440605X8298
Primanda, R. P., Alwi, A., & Mustikasari, D. (2021). Data Mining Seleksi Siswa Berprestasi Untuk Menentukan Kelas Unggulan Menggunakan Metode K-Means Clustering (Studi Kasus di MTS Darul Fikri). KOMPUTEK, 5(1), 88. https://doi.org/10.24269/jkt.v5i1.686
Rahma, L. M. (2020). Implementasi Algoritma K-Means Berbasis Android Untuk Clustering Tingkat Pemahaman Mahasiswa. Universitas Islam Negeri Maulana Malik Ibrahim.
Sirait, W., Defit, S., & Nurcahyo, G. W. (2019). Algoritma K-Means Untuk Klasterisasi Tugas Akhir Mahasiswa Berdasarkan Keahlian. Jurnal Sistim Informasi Dan Teknologi, 1(3), 25–30. https://doi.org/10.35134/jsisfotek.v1i3.6
Triandini, M., Defit, S., & Nurcahyo, G. W. (2021). Data Mining dalam Mengukur Tingkat Keaktifan Siswa dalam Mengikuti Proses Belajar pada SMP IT Andalas Cendekia. Jurnal Informasi Dan Teknologi, 3, 167–173. https://doi.org/10.37034/jidt.v3i3.120
Vhallah, I., Sumijan, S., & Santony, J. (2018). Pengelompokan Mahasiswa Potensial Drop Out Menggunakan Metode Clustering K-Means. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 2(2), 572–577. https://doi.org/10.29207/resti.v2i2.308
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Falih Pramataning Dewi, Priskila Siwi Aryni, Yuyun Umaidah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.