Algoritma Decision Tree untuk Prediksi Deteksi Penyakit Kanker Payudara

Authors

  • Ayu Dian Fitri Mellina UIN Maulana Malik Ibrahim Malang
  • Suhartono Suhartono UIN Maulana Malik Ibrahim Malang
  • M. Ainul Yaqin UIN Maulana Malik Ibrahim Malang

DOI:

https://doi.org/10.14421/jiska.2024.9.1.70-78

Keywords:

Breast Cancer, Classification, Prediction, Decision Tree, Machine Learning

Abstract

Cancer is a deadly disease that is difficult to cure. Early cancer detection can be done through laboratory tests to identify the cancer type. Breast cancer is a type of cancer with initial symptoms in the form of a lump. Data mining and classification methods, such as decision trees with ID3 and C5.0 algorithms, are used to categorize breast cancer. The dataset used is Breast Cancer Coimbra, which was downloaded from UCI Machine Learning in 2018. ID3 has limitations in handling unstructured data and continuous attributes, while C5.0 is better. Both algorithms produce tree models with different levels of accuracy. This study shows that the C5.0 algorithm has the best classification results with 80% accuracy, 84.2% precision, 80% recall, and 80% F1 score. 80% accuracy shows the system's classification ability, so the C5.0 model can be used to predict breast cancer.

References

Agarwal, S. (2013). Data Mining: Data Mining Concepts and Techniques. 2013 International Conference on Machine Intelligence and Research Advancement, 203–207. https://doi.org/10.1109/ICMIRA.2013.45

Grandini, M., Bagli, E., & Visani, G. (2020). Metrics for Multi-Class Classification: an Overview. http://arxiv.org/abs/2008.05756

Mayadewi, P., & Rosely, E. (2015). Prediksi Nilai Proyek Akhir Mahasiswa Menggunakan Algoritma Klasifikasi Data Mining. Seminar Nasional Sistem Informasi Indonesia (SESINDO) 2015, 2015. https://is.its.ac.id/pubs/oajis/index.php/home/detail/1582/PREDIKSI-NILAI-PROYEK-AKHIR-MAHASISWA-MENGGUNAKAN-ALGORITMA-KLASIFIKASI-DATA-MINING

Musa, A. A., & Aliyu, U. M. (2020). Application of Machine Learning Techniques in Predicting of Breast Cancer Metastases Using Decision Tree Algorithm, in Sokoto Northwestern Nigeria. Journal of Data Mining in Genomics & Proteomics, 11(1). https://www.walshmedicalmedia.com/open-access/application-of-machine-learning-techniques-in-predicting-of-breast-cancer-metastases-using-decision-tree-algorithm-in-sokoto-north-53078.html

Patrcio, M., Pereira, J., Crisstomo, J., Matafome, P., Seia, R., & Caramelo, F. (2018). Breast Cancer Coimbra. UCI Machine Learning Repository. https://doi.org/https://doi.org/10.24432/C52P59

Pribadi, D., Athiry, S., Saputra, R. A., Supiandi, A., Prayudi, D., Nusa, S., & Sukabumi, M. (2018). Sistem Pakar Diagnosa Penyakit Demam Berdarah Dengue Menggunakan Algoritma Iterative Dichotomiser 3 (ID3). SNIT 2018, 1(1), 129–133. https://seminar.bsi.ac.id/snit/index.php/snit-2018/article/view/37

Sunjana. (2010). Aplikasi Mining Data Mahasiswa dengan Metode Klasifikasi Decision Tree. Seminar Nasional Aplikasi Teknologi Informasi (SNATI), 1907–5022. https://journal.uii.ac.id/Snati/article/view/1857

Wahyudin. (2009). Metode Iterative Dichotomizer 3 ( ID3 ) Untuk Penerimaan Mahasiswa Baru. Universitas Pendidikan Indonesia.

Wei, W. (2011). ID3 Algorithm and C4.5 Algorithm Based on Decision Tree. Journal of Hubei University of Technology.

Zhang, D., Wang, J., & Zhao, X. (2015). Estimating the Uncertainty of Average F1 Scores. Proceedings of the 2015 International Conference on The Theory of Information Retrieval, 317–320. https://doi.org/10.1145/2808194.2809488

Downloads

Published

2024-01-25

How to Cite

Mellina, A. D. F., Suhartono, S. ., & Yaqin, M. A. (2024). Algoritma Decision Tree untuk Prediksi Deteksi Penyakit Kanker Payudara. JISKA (Jurnal Informatika Sunan Kalijaga), 9(1), 70–78. https://doi.org/10.14421/jiska.2024.9.1.70-78