Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes

Authors

  • Moch. Reinaldy Destra Fachreza UIN Maulana Malik Ibrahim Malang
  • Suhartono Suhartono UIN Maulana Malik Ibrahim Malang
  • M. Ainul Yaqin UIN Maulana Malik Ibrahim Malang

DOI:

https://doi.org/10.14421/jiska.2023.8.3.243-251

Keywords:

IKN, Naïve Bayes, Sentiments, Classification, Twitter

Abstract

Some time ago, the House of Representatives passed Law (UU) Number 3 of 2022 concerning the National Capital City on January 18, 2022. Then, President Joko Widodo officially signed the IKN Law on February 15, 2022. Thus, the Indonesian capital will be moved to Penajam Paser Utara Regency and Kutai Kartanegara Regency, East Kalimantan Province. The public's response to the decision varies; many respond with supportive sentiments, but some react with unsupportive ideas. Nowadays, there are many ways to observe information collected on social media. Various responses submitted through social media can be used as sentiment classification research data. The Naïve Bayes method is commonly used for this type of research. Data was collected between February 15-25, 2023, with as many as 500 tweets. This research uses the Gaussian Naïve Bayes type because of the independence assumption made by this method. Features that do not significantly contribute to the classification can be ignored, thus reducing the impact of irrelevant features. This study aims to measure public sentiment on Twitter towards the process of moving the nation's capital. The system created provides the best trial results at 80% feature usage with 82.0% accuracy, 76.9% precision, and 100% recall.

References

Al-Aidaroos, K. M., Bakar, A. A., & Othman, Z. (2010). Naïve Bayes variants in classification learning. 2010 International Conference on Information Retrieval & Knowledge Management (CAMP), 276–281. https://doi.org/10.1109/INFRKM.2010.5466902

Ashraf, A., Anwer, S., & Khan, M. G. (2018). A Comparative Study of Predicting Student’s Performance by use of Data Mining Techniques. American Scientific Research Journal for Engineering, Technology, and Sciences, 44(1), 122–136. https://www.asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/4170

Hadi, F., & Ristawati, R. (2020). Pemindahan Ibu Kota Indonesia dan Kekuasaan Presiden dalam Perspektif Konstitusi. Jurnal Konstitusi, 17(3), 530–557. https://doi.org/10.31078/jk1734

Herdhianto, A. (2020). Sentiment analysis menggunakan Naïve Bayes Classifier (NBC) pada tweet tentang zakat [Universitas Islam Negeri Syarif Hidayatullah Jakarta]. https://repository.uinjkt.ac.id/dspace/handle/123456789/53661

Hutasoit, W. L. (2019). Analisa Pemindahan Ibukota Negara. DEDIKASI : Jurnal Ilmiah Sosial, Hukum, Budaya, 39(2), 108–128. https://doi.org/10.31293/DDK.V39I2.3989

Jahromi, A. H., & Taheri, M. (2017). A non-parametric mixture of Gaussian naive Bayes classifiers based on local independent features. 2017 Artificial Intelligence and Signal Processing Conference (AISP), 209–212. https://doi.org/10.1109/AISP.2017.8324083

Krisdiyanto, T. (2021). Analisis Sentimen Opini Masyarakat Indonesia Terhadap Kebijakan PPKM pada Media Sosial Twitter Menggunakan Naïve Bayes Clasifiers. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, 7(1), 32. https://doi.org/10.24014/coreit.v7i1.12945

Ogura, H., Hanada, Y., Amano, H., & Kondo, M. (2022). A stochastic model of word occurrences in hierarchically structured written texts. SN Applied Sciences, 4(3), 77. https://doi.org/10.1007/s42452-022-04953-w

Ratniasih, N. L., Sudarma, M., & Gunantara, N. (2017). Penerapan Text Mining dalam Spam Filtering untuk Aplikasi Chat. Majalah Ilmiah Teknologi Elektro, 16(3), 13. https://doi.org/10.24843/MITE.2017.v16i03p03

Saraswati, M. K., & Adi, E. A. W. (2022). Pemindahan Ibu Kota Negara Ke Provinsi Kalimantan Timur Berdasarkan Analisis SWOT. JISIP (Jurnal Ilmu Sosial Dan Pendidikan), 6(2). https://doi.org/10.58258/jisip.v6i2.3086

Sivakumari, S., Priyadarsini, R. P., & Amudha, P. (2009). Accuracy Evaluation of C4.5 and Naive Bayes Classifiers Using Attribute Ranking Method. International Journal of Computational Intelligence Systems, 2(1), 60. https://doi.org/10.2991/jnmp.2009.2.1.7

Suhartono, S., Kurniawan, F., & Imran, B. (2018). Identification of virtual plants using bayesian networks based on parametric L-system. International Journal of Advances in Intelligent Informatics, 4(1), 40. https://doi.org/10.26555/ijain.v4i1.157

Sutoyo, E., & Almaarif, A. (2020). Twitter sentiment analysis of the relocation of Indonesia’s capital city. Bulletin of Electrical Engineering and Informatics, 9(4), 1620–1630. https://doi.org/10.11591/eei.v9i4.2352

Tim Pustaka Phoenix. (2013). Kamus Besar Bahasa Indonesia (S. Wahyuni, Ed.). Pustaka Phoenix.

You, J., Lee, J., & Kwon, H.-Y. (2021). A Complete and Fast Scraping Method for Collecting Tweets. 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), 24–27. https://doi.org/10.1109/BigComp51126.2021.00014

Zuhdi, A. M., Utami, E., & Raharjo, S. (2019). Analisis Sentiment Twitter Terhadap Capres Indonesia 2019 dengan Metode K-NN. Jurnal Informa : Jurnal Penelitian Dan Pengabdian Masyarakat, 5(2), 1–7. https://doi.org/10.46808/INFORMA.V5I2.73

Downloads

Published

2023-09-30

How to Cite

Fachreza, M. R. D., Suhartono, S., & Yaqin, M. A. (2023). Klasifikasi Sentimen Masyarakat Terhadap Proses Pemindahan Ibu Kota Negara (IKN) Indonesia pada Media Sosial Twitter Menggunakan Metode Naïve Bayes. JISKA (Jurnal Informatika Sunan Kalijaga), 8(3), 243–251. https://doi.org/10.14421/jiska.2023.8.3.243-251