Metode HLF untuk Deteksi Objek Terapung pada Permukaan Sungai Martapura
DOI:
https://doi.org/10.14421/jiska.2019.42-06Abstract
Haar Like Feature (HLF) merupakan metode deteksi objek terbaru yang dapat menghasilkan kualitas visual yang lebih baik. Bila dibandingkan dengan metode deteksi objek lainnya, HLF cenderung lebih sering digunakan untuk mendeteksi wajah manusia, dan baru beberapa kali digunakan untuk deteksi objek bergerak. Objek pada permukaan sungai memiliki kecenderungan mengapung, bergerak, rata-rata berupa transportasi air maupun objek lainnya seperti sampah yang dapat mengganggu perairan sungai. Penelitian ini bertujuan menerapkan metode HLF untuk deteksi objek terapung pada permukaan sungai Martapura dengan menggunakan dua kamera yang memiliki kualitas hasil citra yang berbeda. Objek terapung yang terdeteksi dapat menjadi data yang berguna untuk menjaga keamanan perairan sungai. Citra pertama diambil menggunakan kamera smartphone, spesifikasi 16 Megapixel, sedangkan citra kedua menggunakan kamera mirrorless, spesifikasi 24 Megapixel. Hasil penelitian menunjukkan bahwa deteksi objek terapung dengan menggunakan kamera smartphone, memiliki persentase keberhasilan 0%. Deteksi objek dengan menggunakan kamera mirrorlesss memiliki keberhasilan 65,5%. Kualitas hasil pixel pada citra sangat berpengaruh terhadap tingkat keberhasilan metode HLF untuk deteksi objek terapung pada sungai Martapura.References
Arunachalam, H., & Motwani, M. 2016. Image Segmentation for the Extraction of Face using Haar like Feature. The International Arab Journal of Information Technology 13(6A).
Borghgraef, A. et al. 2010. An evaluation of pixel-based methods for the detection of floating objects on the sea surface. Eurasip Journal on Advances in Signal Processing 2010(May 2014).
Déniz, O., Castrillón, M., & Hernández, M. 2003. Face recognition using independent component analysis and support vector machines. Pattern Recognition Letters 24(13): p.2153–2157.
Hinojosa, I.A., Rivadeneira, M.M., & Thiel, M. 2011. Temporal and spatial distribution of floating objects in coastal waters of central-southern Chile and Patagonian fjords. Continental Shelf Research 31(3–4): p.172–186.
Komorkiewicz, M., Kluczewski, M., & Gorgon, M. 2012. Floating point HOG implementation for real-time multiple object detection. Proceedings - 22nd International Conference on Field Programmable Logic and Applications, FPL 2012: p.711–714.
Lazaro, A., Buliali, J.L., & Amaliah, B. 2018. Deteksi Jenis Kendaraan di Jalan Menggunakan OpenCV. Jurnal Teknik ITS 6(2).
Lienhart, R., & Maydt, J. 2003. An extended set of Haar-like features for rapid object detection. : p.I-900-I-903.
Malagón-Borja, L., & Fuentes, O. 2009. Object detection using image reconstruction with PCA. Image and Vision Computing 27(1–2): p.2–9.
Medvedev, A. V., Kainerstorfer, J., Borisov, S. V., Barbour, R.L., & VanMeter, J. 2008. Event-related fast optical signal in a rapid object recognition task: Improving detection by the independent component analysis. Brain Research 1236: p.145–158.
Saubari, N., Ansari, R., & Mukhaymi Gazali. 2019. Penerapan Metode Haar Like Feature untuk Mendeteksi Objek yang ada di Permukaan Sungai Martapura sebagai Dasar Perhitungan LHR (Lalu Lintas Harian Rata-rata) Sungai. Banjarmasin.
Saubari, N., Isnanto, R., & Adi, K. 2016. Jaringan Syaraf Tiruan Perambatan Balik Untuk Pengenalan Wajah. Jurnal Sistem Informasi Bisnis 6(1): p.30.
Viola, M. 2011. T H E I N T E R R E L A T I O N S H I P OF L A N D S C A P E E C O L O G Y & L A N D S C A P E A R C H I T E C T U R E : (May).
Viola, P., & Jones, M. 2005. Rapid object detection using a boosted cascade of simple features. In Computer Society Conference on Computer Vision and Pattern Recognition, I-511-I-518.
Waliulu, R.F. 2018. Deteksi dan Penggolongan Kendaraan dengan Kalman Filter dan Model Gaussian di Jalan Tol. Jurnal Sistem Informasi Bisnis 8(1): p.1.
Zhu, S. et al. 2018. Moving object real-time detection and tracking method based on improved Gaussian mixture model. Proceedings of 2018 IEEE 7th Data Driven Control and Learning Systems Conference, DDCLS 2018 (1): p.654–658.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.