Klasterisasi Jumlah Penduduk Provinsi Jawa Timur Tahun 2021-2023 Menggunakan Algoritma K-Means
DOI:
https://doi.org/10.14421/jiska.2024.9.2.134-146Keywords:
Population Distribution, Clustering, East Java, K-Means, Elbow Method, Data MiningAbstract
Understanding the population data of a region is crucial for policy development and strategic planning. East Java Province, the second-largest province in Indonesia, has undergone significant population growth from 2021 to 2023. Uneven growth poses challenges in resource and infrastructure management. The K-Means algorithm clusters population data into several groups based on specific characteristics. The Elbow method is used to determine the optimal number of clusters, ensuring the accuracy of the analysis. This research aims to analyze and cluster the population distribution in each city in East Java Province, providing a more detailed and accurate depiction. The research findings reveal three significant clusters. Cluster 0 includes 21 towns, Cluster 1 comprises 4, and Cluster 2 encompasses 13. These findings have important implications for targeted development policy formulation at the city level in East Java Province. Additionally, this study contributes to the development of demographic analysis and population management, using valid methods and consistent results between RapidMiner and manual calculations. In conclusion, this research provides a solid foundation for more effective development policy formulation in East Java Province, offering essential information for sustainable population management.
References
Anjelita, M., Windarto, A. P., & Hartama, D. (2019). Pemanfaatan Data Mining pada Pengelompokan Provinsi Terhadap Pencemaran Lingkungan Hidup. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1). https://doi.org/10.30865/komik.v3i1.1675
Anufia, B., & Alhamid, T. (2019). Instrumen Pengumpulan Data. OSF. https://doi.org/10.31227/OSF.IO/S3KR6
Badan Pusat Statistik. (2024, March 14). Jumlah Penduduk Provinsi Jawa Timur (Jiwa), 2021-2023. Badan Pusat Statistik Kota Kediri. https://kedirikota.bps.go.id/indicator/12/358/1/jumlah-penduduk-provinsi-jawa-timur.html
Budiana, N. D., Siregar, R. R. A., & Susanti, M. N. I. (2019). Penetapan Instruktur Diklat Menggunakan Metode Clustering K-Means dan Topsis Pada PT PLN (Persero) Udiklat Jakarta. PETIR, 12(2), 111–121. https://doi.org/10.33322/petir.v12i2.454
Dewi, F. P., Aryni, P. S., & Umaidah, Y. (2022). Implementasi Algoritma K-Means Clustering Seleksi Siswa Berprestasi Berdasarkan Keaktifan dalam Proses Pembelajaran. JISKA (Jurnal Informatika Sunan Kalijaga), 7(2), 111–121. https://doi.org/10.14421/jiska.2022.7.2.111-121
Fahrozi, A. Al, Insani, F., Budianita, E., & Afrianty, I. (2023). Implementasi Algoritma K-Means dalam Menentukan Clustering pada Penilaian Kepuasan Pelanggan di Badan Pelatihan Kesehatan Pekanbaru. Indonesian Journal of Innovation Multidisipliner Research, 1(4), 474–492. https://doi.org/10.31004/IJIM.V1I4.53
Fitriyah, H., Safitri, E. M., Muna, N., Khasanah, M., Aprilia, D. A., & Nurdiansyah, D. (2023). Implementasi Algoritma Clustering dengan Modifikasi Metode Elbow untuk Mendukung Strategi Pemerataan Bantuan Sosial di Kabupaten Bojonegoro. Jurnal Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 4(3), 1598–1607. https://doi.org/10.46306/lb.v4i3.453
Harahap, L. M., Fuadi, W., Rosnita, L., Darnila, E., & Meiyanti, R. (2022). Klastering Sayuran Unggulan Menggunakan Algoritma K-Means. Jurnal Teknik Informatika Dan Sistem Informasi, 8(3), 567–579. https://doi.org/10.28932/jutisi.v8i3.5277
Herviany, M., Putri Delima, S., Nurhidayah, T., & Kasini, K. (2021). Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokkan Daerah Rawan Tanah Longsor Pada Provinsi Jawa Barat. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 1(1), 34–40. https://doi.org/10.57152/malcom.v1i1.60
Naldy, E. T., & Andri, A. (2021). Penerapan Data Mining Untuk Analisis Daftar Pembelian Konsumen Dengan Menggunakan Algoritma Apriori Pada Transaksi Penjualan Toko Bangunan MDN. Jurnal Nasional Ilmu Komputer, 2(2), 89–101. https://doi.org/10.47747/jurnalnik.v2i2.525
Nawassyarif, M. Julkarnain, & Rizki Ananda, K. (2020). Sistem Informasi Pengolahan Data Ternak Unit Pelaksana Teknis Produksi dan Kesehatan Hewan Berbasis Web. Jurnal Informatika, Teknologi Dan Sains, 2(1), 32–39. https://doi.org/10.51401/jinteks.v2i1.556
Nofiar, A., Defit, S., & Sumijan. (2019). Penentuan Mutu Kelapa Sawit Menggunakan Metode K-Means Clustering. Jurnal KomtekInfo, 5(3), 1–9. https://doi.org/10.35134/komtekinfo.v5i3.26
Sadewo, M. G., Windarto, A. P., & Wanto, A. (2018). Penerapan Algoritma Clustering dalam Mengelompokkan Banyaknya Desa/Kelurahan Menurut Upaya Antisipasi/Mitigasi Bencana Alam Menurut Provinsi dengan K-Means. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 2(1), 311–319. https://doi.org/10.30865/komik.v2i1.943
Sholeh, M., Suraya, S., & Andayati, D. (2022). Machine Linear untuk Analisis Regresi Linier Biaya Asuransi Kesehatan dengan Menggunakan Python Jupyter Notebook. JEPIN (Jurnal Edukasi Dan Penelitian Informatika), 8(1), 20–27. https://doi.org/10.26418/JP.V8I1.48822
Syahfitri, N., Budianita, E., Nazir, A., & Afrianty, I. (2023). Pengelompokan Produk Berdasarkan Data Persediaan Barang Menggunakan Metode Elbow dan K-Medoid. KLIK: Kajian Ilmiah Informatika Dan Komputer, 4(3), 1668–1675. https://doi.org/10.30865/KLIK.V4I3.1525
Talakua, M. W., Leleury, Z. A., & Taluta, A. W. (2017). Analisis Cluster dengan Menggunakan Metode K-Means untuk Pengelompokkan Kabupaten/Kota di Provinsi Maluku Berdasarkan Indikator Indeks Pembangunan Manusia Tahun 2014. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 11(2), 119–128. https://doi.org/10.30598/barekengvol11iss2pp119-128
Triandini, M., Defit, S., & Nurcahyo, G. W. (2021). Data Mining dalam Mengukur Tingkat Keaktifan Siswa dalam Mengikuti Proses Belajar pada SMP IT Andalas Cendekia. Jurnal Informasi Dan Teknologi, 167–173. https://doi.org/10.37034/jidt.v3i3.120
Triyansyah, D., & Fitrianah, D. (2018). Analisis Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing. Jurnal Telekomunikasi Dan Komputer, 8(3), 163–182. https://doi.org/10.22441/incomtech.v8i3.4174
Virgo, I., Defit, S., & Yuhandri, Y. (2020). Klasterisasi Tingkat Kehadiran Dosen Menggunakan Algoritma K-Means Clustering. Jurnal Sistim Informasi Dan Teknologi, 2(1), 23–28. https://doi.org/10.37034/jsisfotek.v2i1.17
Wicaksana, R. S., Heksaputra, D., Syah, T. A., & Nur’aini, F. F. (2023). Pendekatan K-Means Clustering Metode Elbow Pada Analisis Motivasi Pengunjung Festival Halal JHF#2. Jurnal Ilmiah Ekonomi Islam, 9(3), 4162. https://doi.org/10.29040/jiei.v9i3.10591
Yudhistira, A., & Andika, R. (2023). Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering. Journal of Artificial Intelligence and Technology Information (JAITI), 1(1), 20–28. https://doi.org/10.58602/jaiti.v1i1.22
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Risqi Pradana Aryanto, Agung Nilogiri, Ari Eko Wardoyo
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.