Implementation of Long Short-Term Memory for Chili Price Prediction in East Java Province
DOI:
https://doi.org/10.14421/jiska.2025.10.1.33-47Keywords:
LSTM, prediksi, harga cabai, bahan panganAbstract
Di Indonesia, bahan pangan memiliki harga yang berubah-ubah atau tidak stabil seiring berjalannya waktu dan salah satu komoditas bahan pangan yang sering mengalami ketidakstabilan harga yaitu dari komoditas cabai. Untuk itu, langkah prediksi harga cabai dapat ditempuh untuk memperkirakan harga selanjutnya sehingga dapat diambil strategi yang tepat, khususnya melalui proses pembelajaran mesin dengan memanfaatkan jaringan saraf tiruan LSTM. Pada penelitian ini, dilakukan eksperimen pengujian mengenai hyperparameter serta struktur dari jaringan LSTM itu sendiri yang digunakan untuk prediksi pada data harga dua jenis cabai di Provinsi Jawa Timur yaitu cabai merah dan cabai rawit. Hasil dari penelitian ini menunjukkan konfigurasi hyperparameter dan struktur jaringan terbaik sama untuk tiap data harga jenis cabai yang diuji. Data harga cabai merah menghasilkan nilai rata-rata RMSE terbaik yaitu 1751,690, sedangkan data harga cabai rawit menghasilkan nilai rata-rata RMSE terbaik yaitu 1888,741.
References
Apa itu Long Short Term Memory (LSTM)? (2022). Algoritma. https://algorit.ma/blog/lstm-network-adalah-2022/
Arfan, A., & Lussiana, E. T. P. (2020). Perbandingan algoritma long short-term memory dengan SVR pada prediksi harga saham di Indonesia.
Campbell, D. T., & Stanley, J. C. (2015). Experimental and quasi-experimental designs for research. Ravenio books.
Chairurrachman, I. (2022). PENERAPAN LONG SHORT-TERM MEMORY PADA DATA TIME SERIES UNTUK PREDIKSI HARGA SAHAM PT. INDOFOOD CBP SUKSES MAKMUR TBK (ICBP). UIN SUNAN KALIJAGA YOGYAKARTA.
Dhadse, A. (2021). Introduction to TensorFlow with Keras API. Analytics Vidhya. https://medium.com/analytics-vidhya/introduction-to-tensorflow-with-keras-api-36cbeeb562d5
Harga Cabai Rawit di Pasar Wilayah Jatim Naik Jelang Ramadan. (2022). CNN Indonesia. https://www.cnnindonesia.com/ekonomi/20220307190530-92-767987/harga-cabai-rawit-di-pasar-wilayah-jatim-naik-jelang-ramadan
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112). Springer.
Maity, R. (2021). Min Max Scaler. https://medium.com/@ranjitmaity95/min-max-scaler-b2411ab3136d
Oh, F. (2012). What Is CUDA? https://blogs.nvidia.com/blog/what-is-cuda-2/
Qiu, J., Wang, B., & Zhou, C. (2020). Forecasting stock prices with long-short term memory neural network based on attention mechanism. PloS One, 15(1), e0227222.
Rahmadini, R., LorencisLubis, E. E., Priansyah, A., Yolanda, R. W. N., & Meutia, T. (2023). Penerapan Data Mining Untuk Memprediksi Harga Bahan Pangan Di Indonesia Menggunakan Algoritma K-Nearest Neighbor. Jurnal Mahasiswa Akuntansi Samudra, 4(4), 223–235.
Riyantoko, P. A., Fahruddin, T. M., Hindrayani, K. M., & Safitri, E. M. (2020). Analisis Prediksi Harga Saham Sektor Perbankan Menggunakan Algoritma Long-Short Terms Memory (Lstm). Seminar Nasional Informatika (SEMNASIF), 1(1), 427–435.
Sanner, M. F. (1999). Python: a programming language for software integration and development. J Mol Graph Model, 17(1), 57–61.
Saxena, S. (2021). What is LSTM? Introduction to Long Short-Term Memory. https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/
Syaidah, K., Chrisnanto, Y. H., & Abdillah, G. (2020). Prediksi Harga Sembako di DKI Jakarta Menggunakan Artificial Neural Network. JUMANJI (Jurnal Masyarakat Informatika Unjani), 3(02). https://doi.org/10.26874/jumanji.v3i02.63
Vivas, E., Allende-Cid, H., & Salas, R. (2020). A systematic review of statistical and machine learning methods for electrical power forecasting with reported mape score. Entropy, 22(12), 1412.
Wede. (2020). Belajar Data Science : Apa yang dimaksud dengan Tensorflow dan Bagaimana Penggunaannya? https://dqlab.id/belajar-data-science-pahami-tensflow
Yanwardhana, E. (2022). Ternyata Gegara Ini Harga Cabai Terbang Sampai Ratusan Ribu. CNBC Indonesia. https://www.cnbcindonesia.com/news/20220615103728-4-347195/ternyata-gegara-ini-harga-cabai-terbang-sampai-ratusan-ribu
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fata Nabil Fikri, Nurochman

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.