Performance Evaluation of Long Short-Term Memory for Chili Price Prediction

Authors

  • Fata Nabil Fikri UIN Sunan Kalijaga Yogyakarta
  • Nurochman Nurochman UIN Sunan Kalijaga Yogyakarta

DOI:

https://doi.org/10.14421/jiska.2025.10.1.33-47

Keywords:

LSTM, Prediction, RMSE, Chili Prices, Groceries

Abstract

Grocery prices often experience fluctuations in several regions of Indonesia, such as East Java Province. One of the commodities affected is chili, including both red chilies and bird’s eye chilies. Predictive steps that utilise machine learning, such as Long Short-Term Memory (LSTM), can be taken to estimate the next price of chili, with the expectation that the authorities can implement the appropriate strategy. LSTM is a network that was developed from RNN networks in previous times by offering a longer cell memory, allowing for the storage of more information. This research focuses on determining whether the LSTM network can be applied to the task of chili price prediction and identifying the suitable architecture and hyperparameter configuration for this case. For this reason, the experimental method is employed by testing several predetermined variables to determine the optimal architecture and hyperparameter configuration. The results of this research demonstrate that the LSTM network can be effectively applied in this case, and the obtained architecture and optimal hyperparameter configuration are consistent for both types of chilies, namely red chilies and bird’s eye chilies. For red chili, the best RMSE value that can be produced is 1751.890 and 1888.741 for bird’s eye chili.

References

Adinugroho, R. (2023). Perbandingan Rasio Split Data Training dan Data Testing Menggunakan Metode LSTM Dalam Memprediksi Harga Indeks Saham Asia [UIN Syarif Hidayatullah Jakarta]. https://repository.uinjkt.ac.id/dspace/handle/123456789/67314

Amendolara, A. B., Sant, D., Rotstein, H. G., & Fortune, E. (2023). LSTM-Based Recurrent Neural Network Provides Effective Short Term Flu Forecasting. BMC Public Health, 23(1), 1788. https://doi.org/10.1186/s12889-023-16720-6

Arfan, A., & ETP, L. (2020). Perbandingan Algoritma Long Short-Term Memory dengan SVR pada Prediksi Harga Saham di Indonesia. PETIR, 13(1), 33–43. https://doi.org/10.33322/petir.v13i1.858

Chairurrachman, I. (2022). Penerapan Long Short-Term Memory pada Data Time Series untuk Prediksi Harga Saham PT. Indofood CBP Sukses Makmur Tbk (ICBP) [UIN Sunan Kalijaga Yogyakarta]. https://digilib.uin-suka.ac.id/id/eprint/53738/

Deepa, B., & Ramesh, K. (2022). Epileptic Seizure Detection Using Deep Learning Through Min Max Scaler Normalization. International Journal of Health Sciences, 6, 10981–10996. https://doi.org/10.53730/ijhs.v6nS1.7801

Dubey, S. R., Singh, S. K., & Chaudhuri, B. B. (2022). Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark. Neurocomputing, 503, 92–108. https://doi.org/10.1016/j.neucom.2022.06.111

Gustineli, M. (2022). A Survey on Recently Proposed Activation Functions for Deep Learning. Engineering Archive (Engrvix). https://doi.org/10.31224/2245

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

Irfan, D., Gunawan, T. S., & Wanayumini, W. (2023). Comparison of SGD, Rmsprop, and Adam Optimation in Animal Classification Using CNNs. International Conference on Information Science and Technology Innovation (ICoSTEC), 2(1), 45–51. https://doi.org/10.35842/icostec.v2i1.35

Sunny, Md. A. I., Maswood, M. M. S., & Alharbi, A. G. (2020). Deep Learning-Based Stock Price Prediction Using LSTM and Bi-Directional LSTM Model. 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), 87–92. https://doi.org/10.1109/NILES50944.2020.9257950

Joseph, F. J. J., Nonsiri, S., & Monsakul, A. (2021). Keras and TensorFlow: A Hands-On Experience. In Advanced Deep Learning for Engineers and Scientists (pp. 85–111). Springer International Publishing. https://doi.org/10.1007/978-3-030-66519-7_4

Li, W., Kiaghadi, A., & Dawson, C. (2021). Exploring the Best Sequence LSTM Modeling Architecture for Flood Prediction. Neural Computing and Applications, 33(11), 5571–5580. https://doi.org/10.1007/s00521-020-05334-3

Moghar, A., & Hamiche, M. (2020). Stock Market Prediction Using LSTM Recurrent Neural Network. Procedia Computer Science, 170, 1168–1173. https://doi.org/10.1016/j.procs.2020.03.049

López, O. A. M., López, A. M., & Crossa, J. (2022). Overfitting, Model Tuning, and Evaluation of Prediction Performance. In Multivariate Statistical Machine Learning Methods for Genomic Prediction (pp. 109–139). Springer International Publishing. https://doi.org/10.1007/978-3-030-89010-0_4

Qiu, J., Wang, B., & Zhou, C. (2020). Forecasting Stock Prices with Long-Short Term Memory Neural Network Based on Attention Mechanism. PLOS ONE, 15(1), e0227222. https://doi.org/10.1371/journal.pone.0227222

Rahmadini, R., LorencisLubis, E. E., Priansyah, A., N, Y. R. W., & Meutia, T. (2023). Penerapan Data Mining untuk Memprediksi Harga Bahan Pangan di Indonesia Menggunakan Algoritma K-Nearest Neighbor. Jurnal Mahasiswa Akuntansi Samudra, 4(4), 223–235. https://doi.org/10.33059/jmas.v4i4.7074

Riyantoko, P. A., Fahruddin, T. M., Hindrayani, K. M., & Safitri, E. M. (2020). Analisis Prediksi Harga Saham Sektor Perbankan Menggunakan Algoritma Long-Short Terms Memory (LSTM). Seminar Nasional Informatika (SEMNASIF), 1(1), 427–435. http://www.jurnal.upnyk.ac.id/index.php/semnasif/article/view/4135

Suradiradja, K. H. (2022). Algoritme Machine Learning Multi-Layer Perceptron dan Recurrent Neural Network untuk Prediksi Harga Cabai Merah Besar di Kota Tangerang. Faktor Exacta, 14(4), 194. https://doi.org/10.30998/faktorexacta.v14i4.10376

Syaidah, K., Chrisnanto, Y. H., & Abdillah, G. (2020). Prediksi Harga Sembako di DKI Jakarta Menggunakan Artificial Neural Network. JUMANJI (Jurnal Masyarakat Informatika Unjani), 3(02), 136. https://doi.org/10.26874/jumanji.v3i02.63

Yadav, A., Jha, C. K., & Sharan, A. (2020). Optimizing LSTM for Time Series Prediction in Indian Stock Market. Procedia Computer Science, 167, 2091–2100. https://doi.org/10.1016/j.procs.2020.03.257

Yanwardhana, E. (2022, June 15). Ternyata Gegara Ini Harga Cabai Terbang Sampai Ratusan Ribu. CNBC Indonesia. https://www.cnbcindonesia.com/news/20220615103728-4-347195/ternyata-gegara-ini-harga-cabai-terbang-sampai-ratusan-ribu

Downloads

Published

2025-01-31

How to Cite

Fikri, F. N., & Nurochman, N. (2025). Performance Evaluation of Long Short-Term Memory for Chili Price Prediction. JISKA (Jurnal Informatika Sunan Kalijaga), 10(1), 33–47. https://doi.org/10.14421/jiska.2025.10.1.33-47