Implementasi K-Means Clustering pada Pengelompokan Pasien Penyakit Jantung

Authors

  • Jihan Wala Universitas Ahmad Dahlan
  • Herman Herman Universitas Ahmad Dahlan
  • Rusydi Umar Universitas Ahmad Dahlan

DOI:

https://doi.org/10.14421/jiska.2024.9.3.205-216

Keywords:

Implementation, K-Means, Clustering, Grouping, Heart Disease

Abstract

Heart disease is a prominent global health concern, necessitating early identification and patient grouping for effective management. This study employs the K-Means clustering algorithm with a medical dataset of 303 patients, encompassing various attributes. These include Age, Gender, Chest Pain Type, Blood Pressure, Serum Cholesterol Level, Fasting Blood Sugar, Resting Electrocardiographic Results, Maximum Heart Rate, Angina, ST Depression, and Slope of the ST Segment. The goal is to categorize patients into four clusters based on chest pain types, a crucial symptom indicating disease severity. The computation concludes after the sixth iteration, revealing Cluster 1 (27 patients), Cluster 2 (135 patients), Cluster 3 (15 patients), and Cluster 4 (126 patients). Collaborative analysis with medical experts highlights that Cluster 1, mainly comprising older males, exhibits high-risk indicators. While this grouping aids in personalized treatment strategy development, further clinical validation involving more experts and datasets is imperative for enhanced reliability.

References

Ali, M. M., Paul, B. K., Ahmed, K., Bui, F. M., Quinn, J. M. W., & Moni, M. A. (2021). Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison. Computers in Biology and Medicine, 136, 104672. https://doi.org/10.1016/j.compbiomed.2021.104672

Arifandi, M., Hermawan, A., Hermawan, A., Avianto, D., & Avianto, D. (2021). Implementasi Algoritma K-Medoids untuk Clustering Wilayah Terinfeksi Kasus Covid-19 di DKI Jakarta. JTT (Jurnal Teknologi Terapan), 7(2), 120–128. https://doi.org/10.31884/jtt.v7i2.353

Awan, A. A. (2020). Heart Disease patients. Kaggle. https://www.kaggle.com/datasets/kingabzpro/heart-disease-patients

Das, D., Kayal, P., & Maiti, M. (2023). A K-means clustering model for analyzing the Bitcoin extreme value returns. Decision Analytics Journal, 6(2022), 100152. https://doi.org/10.1016/j.dajour.2022.100152

Han, J., & Kang, S. (2023). Optimization of missing value imputation for neural networks. Information Sciences, 649, 119668. https://doi.org/10.1016/j.ins.2023.119668

Haris Kurniawan, Sarjon Defit, & Sumijan. (2020). Data Mining Menggunakan Metode K-Means Clustering Untuk Menentukan Besaran Uang Kuliah Tunggal. Journal of Applied Computer Science and Technology, 1(2), 80–89. https://doi.org/10.52158/jacost.v1i2.102

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. https://doi.org/10.1016/j.ins.2022.11.139

Masitha, A., Biddinika, M. K., & Herman, H. (2023). K Value Effect on Accuracy Using the K-NN for Heart Failure Dataset. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 22(3), 593–604. https://doi.org/10.30812/matrik.v22i3.2984

Mishra, P., Biancolillo, A., Roger, J. M., Marini, F., & Rutledge, D. N. (2020). New data preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC Trends in Analytical Chemistry, 132, 116045. https://doi.org/10.1016/j.trac.2020.116045

Muslimah, V. (2024). Implementing Bayes’ Theorem Method in Expert System to Determine Infant Disease. Khazanah Informatika : Jurnal Ilmu Komputer Dan Informatika, 10(1), 1–14. https://doi.org/10.23917/KHIF.V10I1.4837

Novidianto, R., Wibowo, H., & Chandranegara, D. R. (2021). ClusterMix K-Prototypes Algorithm to Capture Variable Characteristics of Patient Mortality With Heart Failure. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 6(2), 109–116. https://doi.org/10.22219/kinetik.v6i2.1209

Purba, N., Poningsih, P., & Tambunan, H. S. (2021). Penerapan Algoritma K-Means Clustering Pada Penyebaran Penyakit Infeksi Saluran Pernapasan Akut (ISPA) di Provinsi Riau. Journal of Information System Research (JOSH), 2(3), 220–226. https://ejurnal.seminar-id.com/index.php/josh/article/view/736

Qi, K.-T., Zhang, H.-S., Zheng, Y.-G., Zhang, Y., & Ding, L.-Y. (2023). Stripe segmentation of oceanic internal waves in SAR images based on Gabor transform and K-means clustering. Oceanologia, 65(4), 548–555. https://doi.org/10.1016/j.oceano.2023.06.006

Rizki, B., Ginasta, N. G., Tamrin, M. A., & Rahman, A. (2020). Customer Loyality Segmentation on Point of Sale System Using Recency-Frequency-Monetary (RFM) and K-Means. Jurnal Online Informatika, 5(2), 130–136. https://doi.org/10.15575/join.v5i2.511

Shah, D., Patel, S., & Bharti, S. K. (2020). Heart Disease Prediction using Machine Learning Techniques. SN Computer Science, 1(6), 345. https://doi.org/10.1007/s42979-020-00365-y

Singh, A., & Kumar, R. (2020). Heart Disease Prediction Using Machine Learning Algorithms. 2020 International Conference on Electrical and Electronics Engineering (ICE3), 452–457. https://doi.org/10.1109/ICE348803.2020.9122958

Solechati, R. G., & Jananto, A. (2023). Penerapan Algoritma K-Means Clustering pada Data Brain Stroke untuk Pengelompokan Profile Pasien. SemanTIK, 9(1), 39–46. https://doi.org/10.55679/semantik.v9i1.29446

Sun, F., & Yu, J. (2021). Improved energy performance evaluating and ranking approach for office buildings using Simple-normalization, Entropy-based TOPSIS and K-means method. Energy Reports, 7, 1560–1570. https://doi.org/10.1016/j.egyr.2021.03.007

V. Ramalingam, V., Dandapath, A., & Karthik Raja, M. (2018). Heart disease prediction using machine learning techniques : a survey. International Journal of Engineering & Technology, 7(2.8), 684–687. https://doi.org/10.14419/ijet.v7i2.8.10557

Downloads

Published

2024-09-25

How to Cite

Wala, J., Herman, H., & Umar, R. (2024). Implementasi K-Means Clustering pada Pengelompokan Pasien Penyakit Jantung. JISKA (Jurnal Informatika Sunan Kalijaga), 9(3), 205–216. https://doi.org/10.14421/jiska.2024.9.3.205-216