Implementasi K-Means Clustering pada Pengelompokan Pasien Penyakit Jantung
DOI:
https://doi.org/10.14421/jiska.2024.9.3.205-216Keywords:
Implementation, K-Means, Clustering, Grouping, Heart DiseaseAbstract
Heart disease is a prominent global health concern, necessitating early identification and patient grouping for effective management. This study employs the K-Means clustering algorithm with a medical dataset of 303 patients, encompassing various attributes. These include Age, Gender, Chest Pain Type, Blood Pressure, Serum Cholesterol Level, Fasting Blood Sugar, Resting Electrocardiographic Results, Maximum Heart Rate, Angina, ST Depression, and Slope of the ST Segment. The goal is to categorize patients into four clusters based on chest pain types, a crucial symptom indicating disease severity. The computation concludes after the sixth iteration, revealing Cluster 1 (27 patients), Cluster 2 (135 patients), Cluster 3 (15 patients), and Cluster 4 (126 patients). Collaborative analysis with medical experts highlights that Cluster 1, mainly comprising older males, exhibits high-risk indicators. While this grouping aids in personalized treatment strategy development, further clinical validation involving more experts and datasets is imperative for enhanced reliability.
References
Ali, M. M., Paul, B. K., Ahmed, K., Bui, F. M., Quinn, J. M. W., & Moni, M. A. (2021). Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison. Computers in Biology and Medicine, 136, 104672. https://doi.org/10.1016/j.compbiomed.2021.104672
Arifandi, M., Hermawan, A., Hermawan, A., Avianto, D., & Avianto, D. (2021). Implementasi Algoritma K-Medoids untuk Clustering Wilayah Terinfeksi Kasus Covid-19 di DKI Jakarta. JTT (Jurnal Teknologi Terapan), 7(2), 120–128. https://doi.org/10.31884/jtt.v7i2.353
Awan, A. A. (2020). Heart Disease patients. Kaggle. https://www.kaggle.com/datasets/kingabzpro/heart-disease-patients
Das, D., Kayal, P., & Maiti, M. (2023). A K-means clustering model for analyzing the Bitcoin extreme value returns. Decision Analytics Journal, 6(2022), 100152. https://doi.org/10.1016/j.dajour.2022.100152
Han, J., & Kang, S. (2023). Optimization of missing value imputation for neural networks. Information Sciences, 649, 119668. https://doi.org/10.1016/j.ins.2023.119668
Haris Kurniawan, Sarjon Defit, & Sumijan. (2020). Data Mining Menggunakan Metode K-Means Clustering Untuk Menentukan Besaran Uang Kuliah Tunggal. Journal of Applied Computer Science and Technology, 1(2), 80–89. https://doi.org/10.52158/jacost.v1i2.102
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. https://doi.org/10.1016/j.ins.2022.11.139
Masitha, A., Biddinika, M. K., & Herman, H. (2023). K Value Effect on Accuracy Using the K-NN for Heart Failure Dataset. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 22(3), 593–604. https://doi.org/10.30812/matrik.v22i3.2984
Mishra, P., Biancolillo, A., Roger, J. M., Marini, F., & Rutledge, D. N. (2020). New data preprocessing trends based on ensemble of multiple preprocessing techniques. TrAC Trends in Analytical Chemistry, 132, 116045. https://doi.org/10.1016/j.trac.2020.116045
Muslimah, V. (2024). Implementing Bayes’ Theorem Method in Expert System to Determine Infant Disease. Khazanah Informatika : Jurnal Ilmu Komputer Dan Informatika, 10(1), 1–14. https://doi.org/10.23917/KHIF.V10I1.4837
Novidianto, R., Wibowo, H., & Chandranegara, D. R. (2021). ClusterMix K-Prototypes Algorithm to Capture Variable Characteristics of Patient Mortality With Heart Failure. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 6(2), 109–116. https://doi.org/10.22219/kinetik.v6i2.1209
Purba, N., Poningsih, P., & Tambunan, H. S. (2021). Penerapan Algoritma K-Means Clustering Pada Penyebaran Penyakit Infeksi Saluran Pernapasan Akut (ISPA) di Provinsi Riau. Journal of Information System Research (JOSH), 2(3), 220–226. https://ejurnal.seminar-id.com/index.php/josh/article/view/736
Qi, K.-T., Zhang, H.-S., Zheng, Y.-G., Zhang, Y., & Ding, L.-Y. (2023). Stripe segmentation of oceanic internal waves in SAR images based on Gabor transform and K-means clustering. Oceanologia, 65(4), 548–555. https://doi.org/10.1016/j.oceano.2023.06.006
Rizki, B., Ginasta, N. G., Tamrin, M. A., & Rahman, A. (2020). Customer Loyality Segmentation on Point of Sale System Using Recency-Frequency-Monetary (RFM) and K-Means. Jurnal Online Informatika, 5(2), 130–136. https://doi.org/10.15575/join.v5i2.511
Shah, D., Patel, S., & Bharti, S. K. (2020). Heart Disease Prediction using Machine Learning Techniques. SN Computer Science, 1(6), 345. https://doi.org/10.1007/s42979-020-00365-y
Singh, A., & Kumar, R. (2020). Heart Disease Prediction Using Machine Learning Algorithms. 2020 International Conference on Electrical and Electronics Engineering (ICE3), 452–457. https://doi.org/10.1109/ICE348803.2020.9122958
Solechati, R. G., & Jananto, A. (2023). Penerapan Algoritma K-Means Clustering pada Data Brain Stroke untuk Pengelompokan Profile Pasien. SemanTIK, 9(1), 39–46. https://doi.org/10.55679/semantik.v9i1.29446
Sun, F., & Yu, J. (2021). Improved energy performance evaluating and ranking approach for office buildings using Simple-normalization, Entropy-based TOPSIS and K-means method. Energy Reports, 7, 1560–1570. https://doi.org/10.1016/j.egyr.2021.03.007
V. Ramalingam, V., Dandapath, A., & Karthik Raja, M. (2018). Heart disease prediction using machine learning techniques : a survey. International Journal of Engineering & Technology, 7(2.8), 684–687. https://doi.org/10.14419/ijet.v7i2.8.10557
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jihan Wala, Herman Herman, Rusydi Umar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.