Pelabelan Sentimen Berbasis Semi-Supervised Learning menggunakan Algoritma LSTM dan GRU

Authors

  • Puji Ayuningtyas Institut Teknologi Telkom Purwokerto
  • Siti Khomsah Institut Teknologi Telkom Purwokerto
  • Sudianto Sudianto Institut Teknologi Telkom Purwokerto

DOI:

https://doi.org/10.14421/jiska.2024.9.3.217-229

Keywords:

Annotation, Deep Learning, GRU, LSTM, Semi-Supervised Learning, Word2Vec

Abstract

In the sentiment analysis research process, there are problems when still using manual labeling methods by humans (expert annotation), which are related to subjectivity, long time, and expensive costs. Another way is to use computer assistance (machine annotator). However, the use of machine annotators also has the research problem of not being able to detect sarcastic sentences. Thus, the researcher proposed a sentiment labeling method using Semi-Supervised Learning. Semi-supervised learning is a labeling method that combines human labeling techniques (expert annotation) and machine labeling (machine annotation). This research uses machine annotators in the form of Deep Learning algorithms, namely the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms. The word weighting method used in this research is Word2Vec Continuous Bag of Word (CBoW). The results showed that the GRU algorithm tends to have a better accuracy rate than the LSTM algorithm. The average accuracy of the training results of the LSTM and GRU algorithm models is 0.904 and 0.913. In contrast, the average accuracy of labeling by LSTM and GRU is 0.569 and 0.592, respectively.

References

Af’idah, D. I., Dairoh, D., Handayani, S. F., & Pratiwi, R. W. (2021). Pengaruh Parameter Word2Vec terhadap Performa Deep Learning pada Klasifikasi Sentimen. Jurnal Informatika: Jurnal Pengembangan IT, 6(3), 156–161. https://doi.org/10.30591/jpit.v6i3.3016

Anggraini, N., Harahap, E. S. N., & Kurniawan, T. B. (2021). Text Mining - Analisis Teks Terkait Isu Vaksinasi COVID-19 (Text Mining - Text Analysis Related to COVID-19 Vaccination Issues). JURNAL IPTEKKOM Jurnal Ilmu Pengetahuan & Teknologi Informasi, 23(2), 141–153. https://doi.org/10.17933/iptekkom.23.2.2021.141-153

Arsi, P., & Waluyo, R. (2021). Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(1), 147. https://doi.org/10.25126/jtiik.0813944

Ayuningtyas, P., & Tantyoko, H. (2024). Comparison of the Word2vec Skipgram Model Method Linkaja Application Review using Bidirectional LSTM Algorithm and Support Vector Machine. Jurnal Sistem Dan Teknologi Informasi (JustIN), 12(1), 189. https://doi.org/10.26418/justin.v12i1.72530

Bandhakavi, A., Wiratunga, N., Massie, S., & Padmanabhan, D. (2017). Lexicon Generation for Emotion Detection from Text. IEEE Intelligent Systems, 32(1), 102–108. https://doi.org/10.1109/MIS.2017.22

Ezen-Can, A. (2020). A Comparison of LSTM and BERT for Small Corpus. http://arxiv.org/abs/2009.05451

Gifari, O. I., Adha, Muh., Freddy, F., & Durrand, F. F. S. (2022). Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine. Journal of Information Technology, 2(1), 36–40. https://doi.org/10.46229/jifotech.v2i1.330

Janah, L. N., & Setiyawan, S. (2022). Dampak Pandemi Covid-19 Terhadap Penggunaan Dompet Digital Di Indonesia. Journal of Educational and Language Research, 1(7), 709–716. https://doi.org/https://doi.org/10.53625/joel.v1i7.1463

Khatri, A., & P, P. (2020). Sarcasm Detection in Tweets with BERT and GloVe Embeddings. Proceedings of the Second Workshop on Figurative Language Processing, 56–60. https://doi.org/10.18653/v1/2020.figlang-1.7

Khomsah, S., & Aribowo, A. S. (2020). Text-Preprocessing Model Youtube Comments in Indonesian. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(4), 648–654. https://doi.org/10.29207/resti.v4i4.2035

Magnolia, C., Nurhopipah, A., & Kusuma, B. A. (2022). Penanganan Imbalanced Dataset untuk Klasifikasi Komentar Program Kampus Merdeka Pada Aplikasi Twitter. Edu Komputika Journal, 9(2), 105–113. https://doi.org/10.15294/edukomputika.v9i2.61854

Nosouhian, S., Nosouhian, F., & Khoshouei, A. K. (2021). A Review of Recurrent Neural Network Architecture for Sequence Learning: Comparison between LSTM and GRU. Preprints, 1–7. https://doi.org/https://doi.org/10.20944/preprints202107.0252.v1

Oktaviani, A., & Hustinawati. (2021). Prediksi Rata-Rata Zat Berbahaya di DKI Jakarta Berdasarkan Indeks Standar Pencemar Udara Menggunakan Metode Long Short-Term Memory. Jurnal Ilmiah Informatika Komputer, 26(1), 41–55. https://doi.org/10.35760/ik.2021.v26i1.3702

Ouali, Y., Hudelot, C., & Tami, M. (2020). An Overview of Deep Semi-Supervised Learning. http://arxiv.org/abs/2006.05278

Rahma, I. A., & Suadaa, L. H. (2023). Penerapan Text Augmentation untuk Mengatasi Data yang Tidak Seimbang pada Klasifikasi Teks Berbahasa Indonesia. Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(6), 1329–1340. https://doi.org/10.25126/jtiik.1067325

Rolangon, A., Weku, A., & Sandag, G. A. (2023). Perbandingan Algoritma LSTM Untuk Analisis Sentimen Pengguna Twitter Terhadap Layanan Rumah Sakit Saat Pandemi Covid-19. TeIKa, 13(01), 31–40. https://doi.org/10.36342/teika.v13i01.3063

Romadhoni, Y., & Holle, K. F. H. (2022). Analisis Sentimen Terhadap PERMENDIKBUD No.30 pada Media Sosial Twitter Menggunakan Metode Naive Bayes dan LSTM. Jurnal Informatika: Jurnal Pengembangan IT, 7(2), 118–124. https://doi.org/10.30591/jpit.v7i2.3191

Seabe, P. L., Moutsinga, C. R. B., & Pindza, E. (2023). Forecasting Cryptocurrency Prices Using LSTM, GRU, and Bi-Directional LSTM: A Deep Learning Approach. Fractal and Fractional, 7(2), 203. https://doi.org/10.3390/fractalfract7020203

Setiyawan, D. A., W, S. K., Diana, A. L., W, I. A. H., Yusuf, M., & Krisnando, K. (2023). Penyuluhan Pemahaman Digital Wallet, Digital Perbankan Dan Pajak Penghasilan Bagi Pengusaha Kecil Untuk Meningkatkan Omzet Penjualan. Jurnal Pengabdian Mandiri, 2(9), 1955–1962. https://bajangjournal.com/index.php/JPM/article/view/6615

Suryati, E., Styawati, S., & Aldino, A. A. (2023). Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Dan Sistem Informasi, 4(1), 96–106. https://doi.org/10.33365/jtsi.v4i1.2445

Wisnalmawati, W., Aribowo, A. S., & Herawati, Y. (2022). Semi-supervised Learning Models for Sentiment Analysis on Marketplace Dataset. International Journal of Artificial Intelligence & Robotics (IJAIR), 4(2), 78–85. https://doi.org/10.25139/ijair.v4i2.5267

Zhafira, D. F., Rahayudi, B., & Indriati, I. (2021). Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube. Jurnal Sistem Informasi, Teknologi Informasi, Dan Edukasi Sistem Informasi, 2(1). https://doi.org/10.25126/justsi.v2i1.24

Zhou, Z. H. (2021). Machine Learning. In Machine Learning. Springer Nature. https://doi.org/10.1007/978-981-15-1967-3/COVER

Downloads

Published

2024-09-25

How to Cite

Ayuningtyas, P., Khomsah, S., & Sudianto, S. (2024). Pelabelan Sentimen Berbasis Semi-Supervised Learning menggunakan Algoritma LSTM dan GRU. JISKA (Jurnal Informatika Sunan Kalijaga), 9(3), 217–229. https://doi.org/10.14421/jiska.2024.9.3.217-229