Pelabelan Sentimen Berbasis Semi-Supervised Learning menggunakan Algoritma LSTM dan GRU
DOI:
https://doi.org/10.14421/jiska.2024.9.3.217-229Keywords:
Annotation, Deep Learning, GRU, LSTM, Semi-Supervised Learning, Word2VecAbstract
In the sentiment analysis research process, there are problems when still using manual labeling methods by humans (expert annotation), which are related to subjectivity, long time, and expensive costs. Another way is to use computer assistance (machine annotator). However, the use of machine annotators also has the research problem of not being able to detect sarcastic sentences. Thus, the researcher proposed a sentiment labeling method using Semi-Supervised Learning. Semi-supervised learning is a labeling method that combines human labeling techniques (expert annotation) and machine labeling (machine annotation). This research uses machine annotators in the form of Deep Learning algorithms, namely the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms. The word weighting method used in this research is Word2Vec Continuous Bag of Word (CBoW). The results showed that the GRU algorithm tends to have a better accuracy rate than the LSTM algorithm. The average accuracy of the training results of the LSTM and GRU algorithm models is 0.904 and 0.913. In contrast, the average accuracy of labeling by LSTM and GRU is 0.569 and 0.592, respectively.
References
Af’idah, D. I., Dairoh, D., Handayani, S. F., & Pratiwi, R. W. (2021). Pengaruh Parameter Word2Vec terhadap Performa Deep Learning pada Klasifikasi Sentimen. Jurnal Informatika: Jurnal Pengembangan IT, 6(3), 156–161. https://doi.org/10.30591/jpit.v6i3.3016
Anggraini, N., Harahap, E. S. N., & Kurniawan, T. B. (2021). Text Mining - Analisis Teks Terkait Isu Vaksinasi COVID-19 (Text Mining - Text Analysis Related to COVID-19 Vaccination Issues). JURNAL IPTEKKOM Jurnal Ilmu Pengetahuan & Teknologi Informasi, 23(2), 141–153. https://doi.org/10.17933/iptekkom.23.2.2021.141-153
Arsi, P., & Waluyo, R. (2021). Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(1), 147. https://doi.org/10.25126/jtiik.0813944
Ayuningtyas, P., & Tantyoko, H. (2024). Comparison of the Word2vec Skipgram Model Method Linkaja Application Review using Bidirectional LSTM Algorithm and Support Vector Machine. Jurnal Sistem Dan Teknologi Informasi (JustIN), 12(1), 189. https://doi.org/10.26418/justin.v12i1.72530
Bandhakavi, A., Wiratunga, N., Massie, S., & Padmanabhan, D. (2017). Lexicon Generation for Emotion Detection from Text. IEEE Intelligent Systems, 32(1), 102–108. https://doi.org/10.1109/MIS.2017.22
Ezen-Can, A. (2020). A Comparison of LSTM and BERT for Small Corpus. http://arxiv.org/abs/2009.05451
Gifari, O. I., Adha, Muh., Freddy, F., & Durrand, F. F. S. (2022). Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine. Journal of Information Technology, 2(1), 36–40. https://doi.org/10.46229/jifotech.v2i1.330
Janah, L. N., & Setiyawan, S. (2022). Dampak Pandemi Covid-19 Terhadap Penggunaan Dompet Digital Di Indonesia. Journal of Educational and Language Research, 1(7), 709–716. https://doi.org/https://doi.org/10.53625/joel.v1i7.1463
Khatri, A., & P, P. (2020). Sarcasm Detection in Tweets with BERT and GloVe Embeddings. Proceedings of the Second Workshop on Figurative Language Processing, 56–60. https://doi.org/10.18653/v1/2020.figlang-1.7
Khomsah, S., & Aribowo, A. S. (2020). Text-Preprocessing Model Youtube Comments in Indonesian. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 4(4), 648–654. https://doi.org/10.29207/resti.v4i4.2035
Magnolia, C., Nurhopipah, A., & Kusuma, B. A. (2022). Penanganan Imbalanced Dataset untuk Klasifikasi Komentar Program Kampus Merdeka Pada Aplikasi Twitter. Edu Komputika Journal, 9(2), 105–113. https://doi.org/10.15294/edukomputika.v9i2.61854
Nosouhian, S., Nosouhian, F., & Khoshouei, A. K. (2021). A Review of Recurrent Neural Network Architecture for Sequence Learning: Comparison between LSTM and GRU. Preprints, 1–7. https://doi.org/https://doi.org/10.20944/preprints202107.0252.v1
Oktaviani, A., & Hustinawati. (2021). Prediksi Rata-Rata Zat Berbahaya di DKI Jakarta Berdasarkan Indeks Standar Pencemar Udara Menggunakan Metode Long Short-Term Memory. Jurnal Ilmiah Informatika Komputer, 26(1), 41–55. https://doi.org/10.35760/ik.2021.v26i1.3702
Ouali, Y., Hudelot, C., & Tami, M. (2020). An Overview of Deep Semi-Supervised Learning. http://arxiv.org/abs/2006.05278
Rahma, I. A., & Suadaa, L. H. (2023). Penerapan Text Augmentation untuk Mengatasi Data yang Tidak Seimbang pada Klasifikasi Teks Berbahasa Indonesia. Jurnal Teknologi Informasi Dan Ilmu Komputer, 10(6), 1329–1340. https://doi.org/10.25126/jtiik.1067325
Rolangon, A., Weku, A., & Sandag, G. A. (2023). Perbandingan Algoritma LSTM Untuk Analisis Sentimen Pengguna Twitter Terhadap Layanan Rumah Sakit Saat Pandemi Covid-19. TeIKa, 13(01), 31–40. https://doi.org/10.36342/teika.v13i01.3063
Romadhoni, Y., & Holle, K. F. H. (2022). Analisis Sentimen Terhadap PERMENDIKBUD No.30 pada Media Sosial Twitter Menggunakan Metode Naive Bayes dan LSTM. Jurnal Informatika: Jurnal Pengembangan IT, 7(2), 118–124. https://doi.org/10.30591/jpit.v7i2.3191
Seabe, P. L., Moutsinga, C. R. B., & Pindza, E. (2023). Forecasting Cryptocurrency Prices Using LSTM, GRU, and Bi-Directional LSTM: A Deep Learning Approach. Fractal and Fractional, 7(2), 203. https://doi.org/10.3390/fractalfract7020203
Setiyawan, D. A., W, S. K., Diana, A. L., W, I. A. H., Yusuf, M., & Krisnando, K. (2023). Penyuluhan Pemahaman Digital Wallet, Digital Perbankan Dan Pajak Penghasilan Bagi Pengusaha Kecil Untuk Meningkatkan Omzet Penjualan. Jurnal Pengabdian Mandiri, 2(9), 1955–1962. https://bajangjournal.com/index.php/JPM/article/view/6615
Suryati, E., Styawati, S., & Aldino, A. A. (2023). Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Dan Sistem Informasi, 4(1), 96–106. https://doi.org/10.33365/jtsi.v4i1.2445
Wisnalmawati, W., Aribowo, A. S., & Herawati, Y. (2022). Semi-supervised Learning Models for Sentiment Analysis on Marketplace Dataset. International Journal of Artificial Intelligence & Robotics (IJAIR), 4(2), 78–85. https://doi.org/10.25139/ijair.v4i2.5267
Zhafira, D. F., Rahayudi, B., & Indriati, I. (2021). Analisis Sentimen Kebijakan Kampus Merdeka Menggunakan Naive Bayes dan Pembobotan TF-IDF Berdasarkan Komentar pada Youtube. Jurnal Sistem Informasi, Teknologi Informasi, Dan Edukasi Sistem Informasi, 2(1). https://doi.org/10.25126/justsi.v2i1.24
Zhou, Z. H. (2021). Machine Learning. In Machine Learning. Springer Nature. https://doi.org/10.1007/978-981-15-1967-3/COVER
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Puji Ayuningtyas, Siti Khomsah, Sudianto Sudianto
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.