Class Weighting Approach For Handling Imbalanced Data On Forest Fire Classification Using EfficientNet-B1

Authors

  • Arvinanto Bahtiar Telkom University
  • Muhammad Ihsan Prawira Hutomo
  • Agung Widiyanto
  • Siti Khomsah

DOI:

https://doi.org/10.14421/jiska.2025.10.1.63-73

Keywords:

Image Classification, imbalanced data, EfficientNet-B1, Forest Fire detection

Abstract

Wildfires pose significant threats to ecosystems and human safety, necessitating effective monitoring techniques. Detecting forest fires based on images of forest conditions could be a breakthrough. But, the model built from imbalanced data leads to low accuracy. This research addresses the challenge of class imbalance in multi-class classification for forest fire detection using the EfficientNet-B1 model. This research explores the implementation of class weighting to enhance model performance, particularly focusing on minority classes namely: Fire, Smoke. A dataset of 7,331 training images, categorized into four classes. The results showed that employing the class weighting method achieved an accuracy of 90%. While training duration of 14 minutes and 45 seconds, outperforming the data augmentation method in terms of time efficiency. This study contributes to the development of more effective methods for forest fire monitoring and provides insights for future research in machine learning applications in environmental contexts.

References

A RAPID RESPONSE ASSESSMENT SPREADING LIKE WILDFIRE THE RISING THREAT OF EXTRAORDINARY LANDSCAPE FIRES. (2022). http://www.un.org/Depts/

Ab Wahab, M. N., Nazir, A., Ren, A. T. Z., Noor, M. H. M., Akbar, M. F., & Mohamed, A. S. A. (2021). Efficientnet-Lite and Hybrid CNN-KNN Implementation for Facial Expression Recognition on Raspberry Pi. IEEE Access, 9, 134065–134080. https://doi.org/10.1109/ACCESS.2021.3113337

Bader, M., Abdelwanis, M., Maalouf, M., & Jelinek, H. F. (2024). Detecting depression severity using weighted random forest and oxidative stress biomarkers. Volume 14, Issue 1, 14(1). https://doi.org/10.1038/s41598-024-67251-y

Bakırarar, B., & ELHAN, A. (2023). Class Weighting Technique to Deal with Imbalanced Class Problem in Machine Learning: Methodological Research. Turkiye Klinikleri Journal of Biostatistics, 15, 19–29. https://doi.org/10.5336/biostatic.2022-93961

Barmpoutis, P., Papaioannou, P., Dimitropoulos, K., & Grammalidis, N. (2020). A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing. Sensors, 20(22), 6442. https://doi.org/10.3390/s20226442

Ben Naceur, M., Kachouri, R., Akil, M., & Saouli, R. (n.d.). A New Online Class-Weighting Approach with Deep Neural Networks for Image Segmentation of Highly Unbalanced Glioblastoma Tumors. Volume 11507 LNCS, Pages 555 - 567, 11507 LNCS, Canaria. https://doi.org/10.1007/978-3-030-20518-8_46

Benkendorf, D. J., Schwartz, S. D., Cutler, D. R., & Hawkins, C. P. (2023). Correcting for the effects of class imbalance improves the performance of machine-learning based species distribution models. Ecological Modelling, 483, 110414. https://doi.org/10.1016/J.ECOLMODEL.2023.110414

Chaturvedi, S., Khanna, P., & Ojha, A. (2022). A survey on vision-based outdoor smoke detection techniques for environmental safety. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 158–187. https://doi.org/10.1016/J.ISPRSJPRS.2022.01.013

Chen, P., Ye, J., Chen, G., Zhao, J., & Heng, P. A. (n.d.). Robustness of Accuracy Metric and its Inspirations in Learning with Noisy Labels. Volume 13A, Pages 11451 - 11461, 13A, Online. https://doi.org/10.1609/aaai.v35i13.17364

Chlap, P., Min, H., Vandenberg, N., Dowling, J., Holloway, L., & Haworth, A. (2021). A review of medical image data augmentation techniques for deep learning applications. Volume 65, Issue 5, Pages 545 - 563, 65(5), 545–563. https://doi.org/10.1111/1754-9485.13261

Cremen, G., & Galasso, C. (2020). Earthquake early warning: Recent advances and perspectives. Earth-Science Reviews, 205, 103184. https://doi.org/10.1016/J.EARSCIREV.2020.103184

De Angeli, K., Gao, S., Danciu, I., Durbin, E. B., Wu, X. C., Stroup, A., Doherty, J., Schwartz, S., Wiggins, C., Damesyn, M., Coyle, L., Penberthy, L., Tourassi, G. D., & Yoon, H. J. (2022). Class imbalance in out-of-distribution datasets: Improving the robustness of the TextCNN for the classification of rare cancer types. Journal of Biomedical Informatics, 125, 103957. https://doi.org/10.1016/J.JBI.2021.103957

Dogra, V., Verma, S., Verma, K., Jhanjhi, N., Ghosh, U., & Le, D.-N. (2022). A Comparative Analysis of Machine Learning Models for Banking News Extraction by Multiclass Classification With Imbalanced Datasets of Financial News: Challenges and Solutions. International Journal of Interactive Multimedia and Artificial Intelligence, 7(3), 35. https://doi.org/10.9781/ijimai.2022.02.002

Elkabalawy, M., Al-Sakkaf, A., Mohammed Abdelkader, E., & Alfalah, G. (2024). CRISP-DM-Based Data-Driven Approach for Building Energy Prediction Utilizing Indoor and Environmental Factors. Volume 16, Issue 17, 16(17), 7249. https://doi.org/10.3390/su16177249

Fan, W., Si, Y., Yang, W., & Sun, M. (2022). Class-specific weighted broad learning system for imbalanced heartbeat classification. Information Sciences, 610, 525–548. https://doi.org/10.1016/J.INS.2022.07.074

Frederich, J., Himawan, J., & Rizkinia, M. (2024). Skin Lesion Classification using EfficientNet B0 and B1 via Transfer Learning for Computer Aided Diagnosis. AIP Conference Proceedings, 3080(1). https://doi.org/10.1063/5.0200741/3269618

Gracia Moisés, A., Vitoria Pascual, I., Imas González, J. J., & Ruiz Zamarreño, C. (2023). Data Augmentation Techniques for Machine Learning Applied to Optical Spectroscopy Datasets in Agrifood Applications: A Comprehensive Review. Volume 23, Issue 20, 23(20). https://doi.org/10.3390/s23208562

Islam, M. S. Bin, Sumon, M. S. I., Sarmun, R., Bhuiyan, E. H., & Chowdhury, M. E. H. (2024). Classification and segmentation of kidney MRI images for chronic kidney disease detection. Computers and Electrical Engineering, 119, 109613. https://doi.org/10.1016/J.COMPELECENG.2024.109613

Madhuri, C. R., Jandhyala, S. S., Ravuri, D. M., & Babu, V. D. (2024). Accurate classification of forest fires in aerial images using ensemble model. Volume 13, Issue 4, Pages 2650 - 2658, 13(4), 2650–2658. https://doi.org/10.11591/eei.v13i4.6527

Nayak, D. R., Padhy, N., Mallick, P. K., Zymbler, M., & Kumar, S. (2022). Brain Tumor Classification Using Dense Efficient-Net. Axioms, 11(1). https://doi.org/10.3390/axioms11010034

Papoutsis, I., Bountos, N. I., Zavras, A., Michail, D., & Tryfonopoulos, C. (2023). Benchmarking and scaling of deep learning models for land cover image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 195, 250–268. https://doi.org/10.1016/j.isprsjprs.2022.11.012

Raza, R., Zulfiqar, F., Khan, M. O., Arif, M., Alvi, A., Iftikhar, M. A., & Alam, T. (2023). Lung-EffNet: Lung cancer classification using EfficientNet from CT-scan images. Engineering Applications of Artificial Intelligence, 126, 106902. https://doi.org/10.1016/j.engappai.2023.106902

Rodríguez, J. J., Díez-Pastor, J.-F., Arnaiz-González, Á., & Kuncheva, L. I. (2020). Random Balance ensembles for multiclass imbalance learning. Knowledge-Based Systems, 193, 105434. https://doi.org/10.1016/j.knosys.2019.105434

Singh, R., Prabha, C., Malik, M., & Goyal, A. (2024). A Robust Deep Learning Model for Brain Tumor Detection and Classification Using Efficient Net: A Brief Meta-Analysis. Journal of Advanced Research in Applied Sciences and Engineering Technology, 49(2), 26–51. https://doi.org/10.37934/ARASET.49.2.2651

Tanase, M. A., Aponte, C., Mermoz, S., Bouvet, A., Le Toan, T., & Heurich, M. (2018). Detection of windthrows and insect outbreaks by L-band SAR: A case study in the Bavarian Forest National Park. Remote Sensing of Environment, 209, 700–711. https://doi.org/10.1016/J.RSE.2018.03.009

Tanveer, M., Sharma, A., & Suganthan, P. N. (2021). Least squares KNN-based weighted multiclass twin SVM. Neurocomputing, 459, 454–464. https://doi.org/10.1016/j.neucom.2020.02.132

Tyndall, J. (2023). Taming Wildfires in the Context of Climate Change. Organisation for Economic Co-Operation and Development. https://doi.org/10.1787/dd00c367-en

Xiao, Y., Zhao, J., Yu, Y., Ding, X., Liu, S., Bao, W., Wen, S., & Zhou, X. (2024). SimpleCNN-UNet: An optic disc image segmentation network based on efficient small-kernel convolutions. Expert Systems with Applications, 256, 124935. https://doi.org/10.1016/J.ESWA.2024.124935

Zhao, J., Jin, J., Chen, S., Zhang, R., Yu, B., & Liu, Q. (2020). A weighted hybrid ensemble method for classifying imbalanced data. Knowledge-Based Systems, 203, 106087. https://doi.org/10.1016/J.KNOSYS.2020.106087

Downloads

Published

2025-01-31

How to Cite

Arvinanto Bahtiar, Hutomo, M. I. P., Agung Widiyanto, & Siti Khomsah. (2025). Class Weighting Approach For Handling Imbalanced Data On Forest Fire Classification Using EfficientNet-B1. JISKA (Jurnal Informatika Sunan Kalijaga), 10(1), 63–73. https://doi.org/10.14421/jiska.2025.10.1.63-73