Seleksi Wajah Digital Menggunakan Algoritma Camshift
DOI:
https://doi.org/10.14421/jiska.2020.51-01Abstract
Real time for digital face database selection using camshift algorithm] Education taken 4-5 years affects physical development. This study uses student digital video data. The recording results are used to identify certain characteristics possessed by a student later stored in the digital file database catalog. The stages of the study consisted of identification, recognition and matching of faces. It starts from converting .mp4 videos to .AVI format. The CAMShift algorithm uses basic HSV colors for tracking face position (tracking) and faces recognition. 1-2 seconds video produces 45-200 frames PNG file. The face matching test results were carried out on several video play, the success of detection: 100% selected, 45%-60%, 80-90%, concluded around 50%-100% successful. Face movements will be caught by the centroid bounding box, if the color of the face is dominant in Hue.
References
Asri, JS. Firmansyah, G. 2018. Implementasi objek detection dan tracking menggunakan deep learning untuk pengolahan citra digital. Konferensi Nasional Sistem Informasi 2018, STMIK Atma Luhur Pangkalpinang, 8 – 9, hal : 717-723.
Chen, X. Jin, M. Xu, W. Shen, W. Qiu, F. 2018. Video object tracking based on SSD and camshift. Proc. SPIE 10836, 2018 International Conference on Image and Video Processing, and Artificial Intelligence.
Coúkuna, M. Ünala, S. 2015. Implementation of Tracking of a Moving Object Based on Camshift Approach with a UAV.”, 9th International Conference Interdisciplinarity in Engineering, INTER-ENG 2015, 8-9, Procedia Technology 22 ( 2016 ) 556 – 56.
Hendrawan, LH. Ramdhani. M, Ramadan, DN. 2016. Rancang Bangun Sistem Pelacakan Objek Secara Real Time Berdasarkan Warna. e-Proceeding of Applied Science : Vol.2, No.1 pp: 383-388.
Jawas, Naser. 2017. Pelacakan Gerakan Tangan Untuk Pengenalan Gerak-Isyarat”, IT Journal, Vol. 5 No. 1, hal 13-23.
Laila, N., Sinaga, ASRM., 2018. Implementasi Steganografi LSB Dengan Enkripsi Vigenere Cipher Pada Citra. ScientiCO : Computer Science Informatics Journal., 47-58.
Mau, SDB. 2016. Pengaruh Histogram Equalization Untuk Perbaikan Kualitas Citra Digital”, Jurnal SIMETRIS, Vol 7 No 1 hal : 177-182.
Rohmi, GF. Zulfikar, WB. Gerhana, YA. 2018. Implementasi Citra Digital Berdasarkan Nilai HSV Untuk Mengidentifikasi Jenis Tanaman Mangga Menggunakan Algoritma K-Nearest Neighbor. INSIGHT, Volume 1 No. , 1 hal: 142-147.
Sinaga, ASRM. Sitio AS. (2020). Sistem Deteksi Biometrik Keunikan Wajah Secara Real Time. Indonesian Journal of Applied Informatics, 4(1), 30-35.
Sultoni, Dachlan, HS. Mudjirahardjo, P. Rahmadwati. 2016. Pengenalan Wajah Secarareal Time Menggunakan Metode Camshift, Lapalcian Of Gaussian Dan Discrete Cosine Transform Two Dimensional (LoGDCT2D)”, Jurnal Ilmiah NERO Vol. 2, No.3 hal : 153-160.
Victoria, Indra Permana Solihin. 2018. Pendeteksi Wajah Secara Realtime Menggunakan Metode Eigenface. Seminar Nasional Informatika, Sistem Informasi Dan Keamanan Siber (SEINASI-KESI), hal: 126-131.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.