Seleksi Wajah Digital Menggunakan Algoritma Camshift

Authors

DOI:

https://doi.org/10.14421/jiska.2020.51-01

Abstract

Real time for digital face database selection using camshift algorithm] Education taken 4-5 years affects physical development. This study uses student digital video data. The recording results are used to identify certain characteristics possessed by a student later stored in the digital file database catalog. The stages of the study consisted of identification, recognition and matching of faces. It starts from converting .mp4 videos to .AVI format. The CAMShift algorithm uses basic HSV colors for tracking face position (tracking) and faces recognition. 1-2 seconds video produces 45-200 frames PNG file. The face matching test results were carried out on several video play, the success of detection: 100% selected, 45%-60%, 80-90%, concluded around 50%-100% successful. Face movements will be caught by the centroid bounding box, if the color of the face is dominant in Hue.

 

 

Author Biography

Anita Sindar R M Sinaga, STMIK Pelita Nusantara Medan

Lecturer

References

Asri, JS. Firmansyah, G. 2018. Implementasi objek detection dan tracking menggunakan deep learning untuk pengolahan citra digital. Konferensi Nasional Sistem Informasi 2018, STMIK Atma Luhur Pangkalpinang, 8 – 9, hal : 717-723.

Chen, X. Jin, M. Xu, W. Shen, W. Qiu, F. 2018. Video object tracking based on SSD and camshift. Proc. SPIE 10836, 2018 International Conference on Image and Video Processing, and Artificial Intelligence.

Coúkuna, M. Ünala, S. 2015. Implementation of Tracking of a Moving Object Based on Camshift Approach with a UAV.”, 9th International Conference Interdisciplinarity in Engineering, INTER-ENG 2015, 8-9, Procedia Technology 22 ( 2016 ) 556 – 56.

Hendrawan, LH. Ramdhani. M, Ramadan, DN. 2016. Rancang Bangun Sistem Pelacakan Objek Secara Real Time Berdasarkan Warna. e-Proceeding of Applied Science : Vol.2, No.1 pp: 383-388.

Jawas, Naser. 2017. Pelacakan Gerakan Tangan Untuk Pengenalan Gerak-Isyarat”, IT Journal, Vol. 5 No. 1, hal 13-23.

Laila, N., Sinaga, ASRM., 2018. Implementasi Steganografi LSB Dengan Enkripsi Vigenere Cipher Pada Citra. ScientiCO : Computer Science Informatics Journal., 47-58.

Mau, SDB. 2016. Pengaruh Histogram Equalization Untuk Perbaikan Kualitas Citra Digital”, Jurnal SIMETRIS, Vol 7 No 1 hal : 177-182.

Rohmi, GF. Zulfikar, WB. Gerhana, YA. 2018. Implementasi Citra Digital Berdasarkan Nilai HSV Untuk Mengidentifikasi Jenis Tanaman Mangga Menggunakan Algoritma K-Nearest Neighbor. INSIGHT, Volume 1 No. , 1 hal: 142-147.

Sinaga, ASRM. Sitio AS. (2020). Sistem Deteksi Biometrik Keunikan Wajah Secara Real Time. Indonesian Journal of Applied Informatics, 4(1), 30-35.

Sultoni, Dachlan, HS. Mudjirahardjo, P. Rahmadwati. 2016. Pengenalan Wajah Secarareal Time Menggunakan Metode Camshift, Lapalcian Of Gaussian Dan Discrete Cosine Transform Two Dimensional (LoGDCT2D)”, Jurnal Ilmiah NERO Vol. 2, No.3 hal : 153-160.

Victoria, Indra Permana Solihin. 2018. Pendeteksi Wajah Secara Realtime Menggunakan Metode Eigenface. Seminar Nasional Informatika, Sistem Informasi Dan Keamanan Siber (SEINASI-KESI), hal: 126-131.

Downloads

Published

2020-05-19

How to Cite

Sinaga, A. S. R. M. (2020). Seleksi Wajah Digital Menggunakan Algoritma Camshift. JISKA (Jurnal Informatika Sunan Kalijaga), 5(1), 1–6. https://doi.org/10.14421/jiska.2020.51-01

Issue

Section

Articles