Perbandingan Algoritma Contraharmonic Mean Filter dan Arithmetic Mean Filter untuk Mereduksi Exponential Noise
DOI:
https://doi.org/10.14421/jiska.2020.52-05Abstract
Noise in the image caused a decrease in image quality, so that the image will look dirty and spots appear on the resulting image. Noise also results in reduced information on the resulting image so that noise limits valuable information when image analysis is performed. Filtering technique is one way to overcome noise. The filtering technique used in this study is using the Contraharmonic Mean Filter algorithm and the Arithmetic Mean Filter algorithm with the type of noise used to reduce the Exponential Noise. The results of the two algorithms show that the Arithmetic Mean Filter algorithm is a better algorithm to reduce the Exponential Noise compared to the Contraharmonic Mean Filter algorithm which is proven based on the value of MSE (Mean Square Error) and PSNR (Peak Signal-to-Noise Ratio).
References
Azmi, B., Wibisono, Darman, & Sugiharto. (2019). Effect of Filter on Image Reconstruction using Filtered Back Projection Algorithm for Industrial Gamma-Ray Tomography Technique. Jurnal Ilmiah Aplikasi Isotop Dan Radiasi, 15(1), 57–67.
Fadillah, N., & Gunawan, C. R. (2019). MENDETEKSI KEAKURATAN METODE NOISE SALT AND PEPPER DENGAN MEDIAN FILTER. Jurnal Informatika, 6(1), 91–95. https://doi.org/10.31311/ji.v6i1.5439
Iswari, A. T., Utami, P. R., Rachmansyah, & Widodo, S. (2011). Implementasi Algoritma Wavelet Haar untuk Menghilangkan Noise Pada Citra Digital. Seminar Nasional Dan Expo Teknik Elektro 2011, 31–36.
Kaur, R., & Singh, E. N. (2014). Image Restoration-A Survey. IOSR Journal of Computer Engineering (IOSR-JCE), 16(4), 107–111.
Mulyani, A., & Apriyanti, G. (2016). PENERAPAN METODE ALGORITMA ARITHMETIC MEAN FILTER UNTUK MEREDUKSI NOISE SALT AND PEPPER PADA CITRA. Jurnal TECHNO Nusa Mandiri, 13(2), 97.
Simangunsong, P. B. N. (2017). Reduksi Noise Salt And Pepper Pada Citra Digital Menggunakan Metode Contraharmonic Mean Filter. MEANS (Media Informasi Analisa Dan Sistem), 2(1), 16–18.
Sulistiyanti, S. R., Setyawan, F. X. A., & Komarudin, M. (2016). Pengolahan Citra, Dasar dan Contoh Penerapannya. Teknosain.
Sutoyo, T., Mulyanto, E., Suhartono, V., Oky Dwi Nurhayati, & Wijanarto. (2009). Teori pengolahan citra digital. Andi.
Syarifuddin, S. N. (2006). ANALISIS FILTERING CITRA DENGAN METODE MEAN FILTER DAN MEDIAN FILTER. Universitas Komputer Indonesia.
Wedianto, A., Sari, H. L., & H., Y. S. (2016). Analisa Perbandingan Metode Filter Gaussian, Mean Dan Median Terhadap Reduksi Noise. Jurnal Media Infotama, 12(1), 21–30. https://doi.org/10.37676/jmi.v12i1.269
Widayat, D., Nasution, S. D., & Siregar, S. R. (2018). PENERAPAN METODE ARITHMETIC MEAN FILTER UNTUK MEREDUKSI NOISE SPECKLE DAN SALT AND PAPER PADA CITRA ORTOKROMATIK. Jurnal Pelita Informatika, 7(1), 16–20.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.