SINTESIS DAN KARAKTERISASI KOMPOSIT ZERO VALENCE IRON (ZVI) TEREMBANKAN PADA CARBOXYMHETHYL CELLULOSE (CMC) SEBAGAI PEREDUKSI ION TEMBAGA (Cu2+)
Main Article Content
Abstract
Telah disintesis komposit zero valent iron (ZVI)-carboxymethyl cellulose (CMC) yang digunakan untuk reduksi dan adsorpsi pada logam berat Cu2+. Penelitian ini bertujuan untuk mengetahui karakterisasi komposit yang terbentuk antara CMC dengan partikel besi dan karakter proses remediasi logam Cu2+. Sintesis komposit ZVI-CMC tanpa menggunakan atmosfer N2 dengan perbandingan konsentrasi Fe2+/BH4- sebesar 1:3, variasi konsentrasi CMC sebesar 0,1, 0,2 dan 0,3w/v%, pH 6 dan suhu sintesis dan 220C. Karakterisasi FT-IR menunjukkan kestabilan ikatan antara CMC dengan partikel besi pada variasi CMC sebesar 0,2w/v% dengan pergeseran bilangan gelombang dari gugus –OH CMC sebesar 3425,58 cm-1 menjadi 3302,13 cm-1 untuk sampel tanpa pengeringan, kemudian karakterisasi XRD menunjukkan bahwa partikel ZVI (Fe0) yang terbentuk dari proses sampel tanpa pengeringan dan sampel kering memiliki karakter kristalinitas yang rendah pada puncak secara berurutan sebesar 2θ: 65,10 dan 44,90 serta terbentuknya senyawa oksida besi dan senyawa lain. TEM menginformasikan bahwa ukuran dari ZVI serta senyawa magnetik (atau oksida besi) serta pengukuran kristalisasi ZVI maupun senyawa magnetik (atau oksida besi) berada dalam ukuran < 2 nanometer. Aplikasi komposit ZVI-CMC ini dilakukan pada titik optimum pH 4, waktu kontak sebesar 6 jam dan massa komposit ZVI-CMC sebesar 0,35 gram. Hasil reduksi dan adsorpsi larutan Cu2+ mengalami deaktivasi yang ditunjukkan oleh dua puncak pada 2θ: 44,70 dan 65,10 disertai dengan penurunan kristalinitas senyawa magnetik atau senyawa oksida besi.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
References
Adel, A. M.; Youssef, H. A,; El-Gendy, A. A.; Nada, A. M. Carboxymethylated Cellulose Hydrogel; Sorption Behavior and Characterization. Natural and Science. 2010, 8, 8.
Akbari, A.; Mohamadzadeh, F. New Method of Synthesis of Stable Zero Valent Iron Nanoparticles (Nzvi) by Chelating Agent Diethylene Triamine Penta Acetic Acid (DTPA) and Removal of Radioactive Uranium From Ground Water by using Iron Nanoparticle. Journal of Nanostructures. 2012, 2, 175-181.
Alowitz, M. J.; Scherer, M. M. Kinetics of Nitrate, Nitrite, and Cr (VI)Reduction by Iron Metal. Environ. Sci. Technol. 2002, 36, 299-306.
Anita, W. F.; Yudhi, U.; Irma, K. K. Analisis kandungan Tembaga (Cu) dalam Air dan Sendimen di Sungai Surabaya. Analytical Sciences. 2008, Vol.20, 1-8.
Chai, M. N.; Isa, M. I. N. The Oleic Acid Composition Effect on the Caaboxymethyl Cellulose Based Biopolymer Electrolyte. Journal of Crystallization Process and Technology. 2013, 3, 1-4.
Chan, S. Application of Metallic Nanoparticles for Groundwater Remediation. M.S. Thesis, the School of Arts and Science Tunku Abdul Rahman State University, State College, Kuala Lumpur, January 2011.
Carroll, O. D.; Sleep, B.; Krol, M.; Boparai, H.; Kocur, C. Nanoscale Zero Valent Iron and Bimetallic Particles for Contaminated Site Remediation. Advance in Water Resource. 2013, 51, 104-122.
Celebi, O.; Uzum, C.; Shahwan, T.; Erten, H. N. A Radiotracer Study of the Adsorption Behavior of Aqueous Ba2+Ions on Nanoparticles of Zero-Valent Iron. Journal of Hazardous Materials. 2007, 148, 761-767.
Chai, M. N.; Isa, M. I. N. The Oleic Acid Compotition Effect on the Carboxymethyl Cellulose Based Biopolimer Electrolyte. Journal of Crystallization Process and Technology. 2013, 3, 1- 4.
Cirtiu, C. M.; Raychoudhury, T.; Ghoshal, S.; Moores, A. Systematic Comparison of the Size, Surface Characteristic and Colloidal Stability of Zero Valent Iron Nanoparticles Pre and Post-Grafted with Common polymers. Colloid Surface A. 2011, 390, 95-104.
Efecan, N.; Shahwan, T.; Eroglu, A. E.; Lieberwirth, I. Characterization of the Uptake of Aqueous Ni2+ Ions on Nanoparticles of Zero-Valent Iron (nZVI). Desalination. 2009, 249, 1048-1054.
Eva, F. K.; Syafrizal; Adinda, N. S. Pengolahan Limbah Campuran Logam Fe, Cu, Ni dan Amonia Menggunakan Metode Flotasi-Filtrasi dengan Zeolit Alam Lampung Sebagai Bahan Pengikat. Prosiding Seminar nasional Teknik kimia “Kejuangan”. 2010, B04-1-B04-5. ISSN 1693-4393.
Fritriyah, A. W.; Utomo, Y.; Kusumaningrum, I. K. Analisis Kandungan Tembaga (Cu) Dalam Air dan Sedimen di Sungai Surabaya. Jurusan Kimia, FMIPA Universitas Negeri Malang, 2013.
Geng, B.; Jin, Z. H., Li, T. L.; Qi, X. H. Preparation of Chitosan-Stabilized Fe0 Nanoparticles for Removal of Hexavalent Chromium in Water. Sci. Total Environ. 2009, 407, 4994-5000.
Grace, T. J.; Sulungbudi; Mujamilah; Ari, H. Sintesis nanopartikel Magnetik Core/Shell Fe/Oksida Fe dengan Metode Reduksi Kimia. Juni 2012, Vol. 13, No.3, 182-187. ISSN : 1411-1098.
Hanna, F. growth and Characterization of Amorphous Tialsin and Hfalsin Thin Films. M.S. Thesis, The state Linkopings university, state college, IT. 2012.
He, F.; Zhao, D. Manipulating the Size and Dispersibility of Zero Valent Iron Nanoparticles by Use of Carboxymethyl Cellulose Stabilizers. Environ. Sci. Technol. 2007, 41, 6216-6221.
Kanel, S. R.; Greneche, J. M.; Choi, H. Arsenic (V) Removal from Groundwater Using Nanoscale Zero Valent Iron as A Colloidal Reaction Barrier Material. Environ. Sci. Technol. 2006, 40, 50-2046.
Lien, H. L.; Zhang, W. X. Transformation of Chorinated Methanes by Nanoscale Iron Particles. Journal of Environ. Eng- ASCE. 1999, 125, 7-1042.
Li, X. Q.; Elliot, D.W.; Zhang, W. X. Zero-Valent Iron Nanoparticles for Abatemet of Environmental Pollutants: materials and engineering aspects.Crit Rev Solid State. 2006, 31, 22-111.
Mcmurry, J.; Fay, R. C. Chemistry. Prentice Hall: Englewood Cliffs, NJ, 1995.
Mery, M. Hubungan Antara Keasaman, Lumpur, dan bahan Penetral yang Dibutuhkan dalam Satuan Volume Air Asam Tambang. PT. Trubaindo Coal Mining: Bandung, 2014; pp 1-19.
Mohammad, M.; Sepideh, N.; Alireza, K.; Simin, N.; Ahmad, A. H. Removal of Arsenic (III,V) from Aqueous Solution by Nanoscale Zero-Valent Iron Stabilized with Starch and Carboxymethyl Cellulose. Journal of Environmental Health Science & Engineering. 2014, 12-74.
Mohd, R. J.; Mohd, S. M. S.; Nor, L. H.; Hee, A. C. Annealling Effects on the Properties of Copper Oxide Thin Films Prepared by Chemical Deposition. Int. J. Electrochem. Sci. 2011, 6, 6094-6104.
Mondal, K.; Jegadeesan, G.; Lalvani, S. B. Removal of Selenate by Fe and NiFe Nanosized Particle. Ind. Eng. Chem. Rhes. 2004, 43, 34-4922.
Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds Part B: Application in Coordination, Organometallic, and Bioinorganic Chemistry. AJohn Wiley & Sons, Inc., Canada, 2009.
Olalekan, A. P.; Olatunya, A. M.; Dada, A. O.; DADA, O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+Unto Phosphoric Acid Modified Rice Husk. Journal of Applied Chemistry (IOSR-JAC), ISSN: 2278-5736. Volume 3, Issue 1(Nov. – Dec. 2012), 38-45.
Palar, H. Pencemaran dan Toksikologi Logam Berat. PT Rineka Cipta, Jakarta, 1994.
Palar, H. Pencemaran dan Toksikologi Logam Berat. PT.Rineka Cipta, Jakarta, 2004.
Petela, E.; Dimos, K.; Douvalis, A.; Bakas, T.; Tucek, J.; Zbofil, R.; Karakassides, M.A. Nanoparticle Zero-Valent Iron Supported on Mesoporous Silica: Cahracterization and Reactivity for Cr (VI) Removal from Aqueous Solution. Journal of Hazardous Materials. 2013, 261, 295-306.
Pijit, J.; Wei, X. Z.; Hsing, L. L. Enhanced Transport of Polyelectrolyte Stabilized Nanoscale Zero-Valent Iron (nZVI) in Porous Media. Chemical Engineering Journal. 2011, 170, 482-491.
Ponder, S. M.; Darab, J. G.; Mallouk, T.E. Remediationof Cr (VI) and Pb (II) Aqueous Solutions Using Supported Nanoscale Zero-Valent Iron. Environ. Sci. Technol. 2000, 34, 2564-2568.
Rahmani, A. R.; Ghaffari, H. R.; Samadi, M. T. A Comparative Study on Arsenic (III) Removal from Aqueous Solution Using Nano and Micro Sized Zero-Valent Iron. Jurnal Environ. Health. Sci. Eng. 2011, Vol. 8 & No. 2, pp. 175-180.
Rochayatun, E.; Edward.; Rozak, A. Kandungan Logam Berat Pb, Cd, Cu, Zn, Ni, Cr, Mn & Fe Dalam Air Laut Dan Sedimen Di Perairan Kalimantan Timur . Jurnal Oseanologi dan Limnologi. 2003, 35(1), 51-71.
Savage, N.; Diallo, M.; Duncan, J.; Street, A.; Sustich, R. Nanotechnology Application for Clean Water. William Andrew .Inc, Norwich, NY. USA, 2009.
Shili, X.; Hui, M.; Miangwu, S.; Shanyun, W.; Qingguo, H.; Xiangyang, S. Excellent Copper (II) Removal Using Zero-Valent Iron nanoparticle-Immobilized Hybrid Electrospun Polymer Nanofibrous Mats. Colloids and Surface A: Physicochem. Eng. Aspects. 2011, 381, 48-54.
Smith, B. A. Workbook for Pollution Prevention by Source Reduction in Textile Wet Processing Pollution. Prevention Pays Program of the North Carolina Division of Environmental Management, 1998.
Suprihatin; Erriek. Biosorpsi Logam Cu(Ii) Dan Cr (Vi ) Pada Limbah Elektroplating Dengan Menggunakan Biomasa Phanerochaete Chrysosporium. Jurnal Teknik Kimia Vol.4,No.1, September 2009.
Sushil, R. K.; Bruce, M.; Laurent, C.; Heechul, C. Removal of Arsenic (III) from Groundwater by Nanoscale Zero-Valent Iron. Environ. Sci. Thehnol. 2005, 39, 1291-1298.
Teguh, K. B.; Rachman, F.; Purbo, C. X-Ray Diffraktometer (XRD). Universitas Sebelas Maret, Surakarta, 2009.
Trishikhi, R.; Nathalie, T.; Subhasis. G. Aggregation and Deposition Kinetics of Carboxymethyl Cellulose-Modified Zero-Valent Iron nanopartikelin Porous Media. Water Research. 2012, 46, 1735-1744.
Wang, Q.; Qian, H.; Yang, Y.; Zhang, Z.; Naman, C.; Xu, X. Reduction of Hexavalent Chromium by Carboxymethyl Cellulose- Stabilized Zero Valent Iron Nanoparticles. Journal of Contaminant Hydrology. 2010, 114, 35-42.
Wijesekara, S. S. R. M. D. H. R.; Basnayake, B. F. A,; Vithanage, M. Organoc-Coated Nanoparticulate Zero Valent Iron for Remediation of Chemical Oxygen Demand (COD) and Disolved Metals from Tropical landfill Leachate. Environmental Science and Pollution Reserch. 2014, Doi 10.1007-11356-014-2625-1. ISSN 0944-1344.
Wisnu, A. U. Dampak Pencemaran Lingkungan. Andi Offet, Yogyakarta, 1994.
Xiong, Z.; Zhao, D.; Pan, G. Rapid and Complete Destruction of Perchlorate in Water and ion-exchange Brine Using Stabilized Zero-Valent Iron Nanoparticles. Water Research. 2007, 41, 3497-3505.
Ying, J. Ions Removal by Iron nanoparticles: A Study on Solid-Water Interface with Zeta Potential. Coloids and Surface A: Physicochem. Eng. Aspects. 2014, 444, 1-8.