Analysis of the Application of Artificial Intelligence (AI) in Halal Product Supply Chain Management: A Systematic Literature Review
DOI:
https://doi.org/10.14421/jiehis.5126Keywords:
artificial intelligent, halal supply chain management, literature reviewAbstract
The development of globalization has made digital technology play an important role in increasing the efficiency of supply chain management to ensure that its products are truly halal at the point of purchase for consumers. The technology that plays an active role in supply chain management is artificial intelligence (AI). This study aims to determine the effectiveness of implementing AI in halal product supply chain management. The object of this study is a scientific article that implements AI technology in halal product supply chain management with a qualitative approach through the Systematic Literature Review (SLR) method. Literature studies were conducted using Google Scholar and Science Direct to obtain detailed and up-to-date information on the topics to be studied. This study found 12 AI models that can be used in supply chain management. However, its implementation in the field of halal supply chains has not been widely implemented. This study also found that the implementation of AI in the halal product supply chain can improve operational efficiency and improve supply chain performance. However, successful adoption depends on technological readiness, good collaboration between technology and human expertise, and consumer trust. Investing in AI-based systems can significantly improve supply chain integrity and consumer trust.
References
A, A. Y. (2024). Ethical implications of artificial intelligence in accounting: A framework for responsible ai adoption in multinational corporations in Jordan. International Journal of Data and Network Science, 8(1), 401–414. https://doi.org/http://dx.doi.org/10.5267/j.ijdns.2023.9.014
Arulmozhi, P., Hemavathi, N., & Raj, P. (2020). ALRC: A Novel Adaptive Linear Regression Based Classification for Grade based Student Learning using Radio Frequency Identification. Wireless Personal Comunications, 114(4), 2091–2107. https://doi.org/10.1007/s11277-020-07141-4
Azzaky, NS, Salimah, A., & Saputri, CR (2024). Merevolusi Bisnis: Peran AI dalam Mendorong Industri 4.0. TechComp Innovations: Jurnal Ilmu Komputer dan Teknologi, 1(1), 28–37. https://doi.org/10.70063/techcompinnovations.v1i1.24
Bengio, Y., Lecun, Y., & Hinton, G. (2021). Deep learning for AI. Communications of the ACM, 64(7), 58–65. https://doi.org/10.1145/3448250
Bintoro, P., Ratnasari, Wihardjo, E., Putri, I. P., & Asari A. (2024). Pengantar Machine Learning. PT. Mafy Media Literasi Indonesia: Solok, Sumatera Barat.
Davies, R. S., Trott, M., Georgi, J., & Farrar, A. (2025). Artificial intelligence and machine learning to enhance critical mineral deposit discovery. Geosystems and Geoenvironment, 4(2). https://doi.org/10.1016/j.geogeo.2025.100361
Dubey, R., Bryde, D. J., Blome, C., Roubaud, D., & Giannakis, M. (2021). Facilitating artificial intelligence powered supply chain analytics through alliance management during the pandemic crises in the B2B context. Industrial Marketing Management, 96, 135–146. https://doi.org/10.1016/j.indmarman.2021.05.003
Dubey, R., Bryde, D. J., Dwivedi, Y. K., Graham, G., & Foropon, C. (2022). Impact of artificial intelligence-driven big data analytics culture on agility and resilience in humanitarian supply chain: A practice-based view. International Journal of Production Economics, 250. https://doi.org/10.1016/j.ijpe.2022.108618
Ghalih, M., Chang, C. H., & Safitri, Y. D. (2025). Leveraging Artificial Intelligence and Technology for Enhancing Halal Supply Chain Management. Jurnal Teknologi Informasi dan Pendidikan, 18(1), 747-759. https://doi.org/10.24036/jtip.v18i1.955
Halder, S., Islam, M. R., Mamun, Q., Mahboubi, A., Walsh, P., & Islam, M. Z. (2025). A Comprehensive Survey on AI-enabled Secure Social Industrial Internet of Things in the Agri-Food Supply Chain. Smart Agricultural Technology. https://doi.org/10.1016/j.atech.2025.100902
Hew, J.-J., Wong, L.-W., Tan, GW-H., Ooi, K.-B., & Lin, B. (2020). Sistem ketertelusuran halal berbasis blockchain: sensasi atau kenyataan? Manajemen Rantai Pasokan, 25(6), 863–879. https://doi.org/ https://doi.org/10.1108/SCM-01-2020-0044
Kehayov, M., Holder, L., & Koch, V. (2022). Application of artificial intelligence technology in the manufacturing process and purchasing and supply management. Procedia Computer Science, 200, 1209–1217. https://doi.org/10.1016/j.procs.2022.01.321
Khairi, U. A., Nurbaiti, & Dharma, B. (2024). Analisis penerapan artificial intellegence (AI) pada manajemen risiko rantai pasok. Jurnal Manajemen dan Jurnal Akuntansi, 9(1), 13-25. http://openjournal.unpam.ac.id/index.php/keberlanjutan/index
Kumar, A., Mani, V., Jain, V., Gupta, H., & Venkatesh, V. G. (2023). Managing healthcare supply chain through artificial intelligence (AI): A study of critical success factors. Computers and Industrial Engineering, 175. https://doi.org/10.1016/j.cie.2022.108815
Kuncorosidi, K., & Sanjaya, N. S. (2021). Supply Chain Risk Management (SCRM) Analysis on The Supply Chain of Halal Food Products Using SCOR, HORR and Pareto Diagram Method (Case Study on Ibu Mimin’s Chicken Slaughter House). Islamic Economic, Accounting, and Management Journal, 3(1), 48-77.
Kurniawati, D. A., & Cakravastia, A. (2023). A review of halal supply chain research: Sustainability and operations research perspective. Cleaner Logistics and Supply Chain, 6. https://doi.org/10.1016/j.clscn.2023.100096
Kurniawati, D. A., Vanany, I., Kumarananda, D. D., & Rochman, M. A. (2024). Toward halal supply chain 4.0: MILP model for halal food distribution. Procedia Computer Science, 232, 1446-1458. https://doi.org/10.1016/j.procs.2024.01.143
Liu, C., Yang, S., Hao, T., & Song, R. (2022). Service risk of energy industry international trade supply chain based on artificial intelligence algorithm. Energy Reports, 8, 13211–13219. https://doi.org/10.1016/j.egyr.2022.09.182
Maulidizen, A. (2019a). Etika Bisnis: Analisis Pemikiran Ekonomi al-Ghazali Dengan Pendekatan Tasawuf. Religi: Jurnal Ilmu-Ilmu Keislaman, 22(2), 160–177. https://doi.org/10.28918/religia.v22i2.6817
Mediavilla, M. A., Dietrich, F., & Palm, D. (2022). Review and analysis of artificial intelligence methods for demand forecasting in supply chain management. Procedia CIRP, 107, 1126-1131. https://doi.org/10.1016/j.procir.2022.05.119
Nurbaiti, N., Asmuni, A., Soemitra, A., Imsar, I., & Aisyah, S. (2023). Behavior analysis of MSMEs in Indonesia using fintech lending comparative study between sharia fintech lending and conventional fintech lending. JPPI (Jurnal Penelitian Pendidikan Indonesia), 9(4), 92–99. https://doi.org/10.29210/0202312273
Rejeb, A., Rejeb, K., Zailani, S., Treiblmaier, H., & Hand, K. J. (2021). Integrating the Internet of Things in the halal food supply chain: A systematic literature review and research agenda. Internet of Things, 13. https://doi.org/10.1016/j.iot.2021.100361
Renders, J. M., & Simonart, T. (2009). Role of artificial neural networks in dermatology. Dermatology, 219(2), 102–104. https://doi.org/10.1159/000225933
Saputra, R., Nasution, M. I. P., & Dharma, B. (2023). The Impact of Using AI Chat GPT on Marketing Effectiveness: A Case Study on Instagram Marketing. Indonesian Journal of Economics and Management, 3(3), 603–617. https://doi.org/10.35313/ijem.v3i3.4936
Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021). Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research, 122, 502–517. https://doi.org/10.1016/j.jbusres.2020.09.009
Wang, B., Wang, J., Dong, K., & Nepal, R. (2024). How does artificial intelligence affect high-quality energy development? Achieving a clean energy transition society. Energy Policy, 186. https://doi.org/10.1016/j.enpol.2024.114010
Wang, J., Lu, S., Wang, S. H., & Zhang, Y. D. (2022). A review on extreme learning machine. Multimedia Tools and Applications, 81(29), 41611–41660. https://doi.org/10.1007/s11042 021-11007-7
Yang, M., Lim, M. K., Qu, Y., Ni, D., & Xiao, Z. (2023). Supply chain risk management with machine learning technology: A literature review and future research directions. Computers and Industrial Engineering, 175. https://doi.org/10.1016/j.cie.2022.108859
Zrelli, I., & Rejeb, A. (2024). A bibliometric analysis of IoT applications in logistics and supply chain management. Heliyon, 10(16).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Shofia Rizka Julianti, Agung Fatwanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
(c) The Author(s). This article is distributed under a Creative Commons Attribution-ShareAlike 4.0 International License.



