Analisis Topik Tagar Covidindonesia pada Instagram Menggunakan Latent Dirichlet Allocation

Authors

DOI:

https://doi.org/10.14421/jiska.2022.7.1.1-9

Keywords:

Data Crawling, Instagram, Latent Dirichlet Allocation, Covid Indonesia, Topic Modeling

Abstract

In this era, technology is increasingly sophisticated, this is evidenced by the number of people using the internet via cell phones, laptops, and other communication tools. One of the developments of this technology is social media such as Instagram. Along with technological developments, Instagram users can upload and share photos and videos using hashtags (#) so that other users can find the results of their posts. Instagram has now become one of the social media used by more than 1 billion people in the world. In this study, the authors wanted to know the dominant topics discussed through the hashtag covidindonesia. This research was conducted using the Latent Dirichlet Allocation (LDA) method. The analysis was carried out after doing text mining on 84 captions from various users on Instagram. To determine the optimal number of topics, by looking at the value of perplexity and topic coherence. The results obtained are the top 5 topics that are the content material in the uploaded video. These topics include covidindonesia, covid_19, pandemics in Indonesia, and discussion of covid-19 virus mutations.

Author Biographies

Kevin Rafi Adjie Putra Santoso, Institut Teknologi Sepuluh Nopember

Information System, Student

Asmaul Husna, Institut Teknologi Sepuluh Nopember

Information System, Student

Nadia Widyawati Putri, Institut Teknologi Sepuluh Nopember

Information System, Student

Nur Aini Rakhmawati, Institut Teknologi Sepuluh Nopember

Information System, Lecturer

References

Abdul Talib, Y. Y., & Mat Saat, R. (2017). Social proof in social media shopping: An experimental design research. SHS Web of Conferences, 34, 02005. https://doi.org/10.1051/shsconf/20173402005

Alfanzar, A. I., Khalid, K., & Rozas, I. S. (2020). Topic Modelling Skripsi Menggunakan Metode Latent Diriclhet Allocation. JSiI (Jurnal Sistem Informasi), 7(1), 7. https://doi.org/10.30656/jsii.v7i1.2036

Azizah, K. N. (2020). Kronologi 2 Pasien Pertama Virus Corona COVID-19 di Indonesia. DetikHealth. https://health.detik.com/berita-detikhealth/d-4922758/kronologi-2-pasien- pertama-virus-corona-covid-19-di-indonesia

Boer, K. M., Pratiwi, M. R., & Muna, N. (2020). Analisis Framing Pemberitaan Generasi Milenial dan Pemerintah Terkait Covid-19 di Media Online. Communicatus: Jurnal Ilmu Komunikasi, 4(1), 85–104. https://doi.org/10.15575/cjik.v4i1.8277

Carman, A. (2018). Instagram now has 1 billion users worldwide. The Verge. https://www.theverge.com/2018/6/20/17484420/instagram-users-one-billion-count

Computing for the Social Science. (2021). Topic modeling. Computing for the Social Science. https://cfss.uchicago.edu/notes/topic-modeling/

Eka Sembodo, J., Budi Setiawan, E., & Abdurahman Baizal, Z. (2016). Data Crawling Otomatis pada Twitter. INDOSC 2016, October, 11–16. https://doi.org/10.21108/INDOSC.2016.111

Harjanta, A. T. J. (2015). Preprocessing Text untuk Meminimalisir Kata yang Tidak Berarti dalam Proses Text Mining. Jurnal Informatika UPGRIS, 1(Juni), 1–9.

Husna, A., Santoso, K. R. A. P., Putri, N. W., & Rakhmawati, N. A. (2020). asmaul- husna/covidindonesia-LDA: Final | Zenodo. https://doi.org/10.5281/zenodo.4679443

Ibrahim, I. S. (2018). Kritik Budaya Komunikasi, Budaya, Media, dan Gaya Hidup Dalam Proses Demokratisasi di Indonesia (S. O. Pavitasari (ed.)). Jalasutra.

Jasmir. (2016). Implementasi Teknik Data Cleaning dan Teknik Roughset pada Data Tidak Lengkap dalam Data Mining. Seminar Nasional APTIKOM (SEMNASTIKOM), 1(1), 99–106. Naury, C., Fudholi, D. H., & Hidayatullah, A. F. (2021). Topic Modelling pada Sentimen Terhadap Headline Berita Online Berbahasa Indonesia Menggunakan LDA dan LSTM. JURNAL

MEDIA INFORMATIKA BUDIDARMA, 5(1), 24. https://doi.org/10.30865/mib.v5i1.2556 Nugraha, B., & Akbar, M. F. (2019). Perilaku Komunikasi Pengguna Aktif Instagram. Jurnal

Manajemen Komunikasi, 2(2), 95. https://doi.org/10.24198/jmk.v2i2.21330

Nurlayli, A., & Nasichuddin, M. A. (2019). Topik Modeling Penelitian Dosen JPTEI UNY pada Google Scholar Menggunakan Latent Dirichlet Allocation. Elinvo (Electronics, Informatics,

and Vocational Education), 4(2), 154–161. https://doi.org/10.21831/elinvo.v4i2.28254 Putra, K. B., & Kusumawardani, R. P. (2017). Analisis Topik Informasi Publik Media Sosial di Surabaya Menggunakan Pemodelan Latent Dirichlet Allocation (LDA). Jurnal Teknik ITS,

(2). https://doi.org/10.12962/j23373539.v6i2.23205

Rahmawati, A., Nikmah, N. L., Perwira, R. D. A., & Rakhmawati, N. A. (2021). Analisis topik

konten channel YouTube K-pop Indonesia menggunakan Latent Dirichlet Allocation.

Teknologi, 11(1), 16–25. https://doi.org/10.26594/teknologi.v11i1.2155

Rangkuti, M. D. E. (2020). Analisis topik komentar video beberapa akun youtube e-commerce

indonesia menggunakan metode latent dirichlet allocation. UIN Syarif Hidayatullah.

Xue, J., Chen, J., Chen, C., Zheng, C., Li, S., & Zhu, T. (2020). Public discourse and sentiment during the COVID 19 pandemic: Using Latent Dirichlet Allocation for topic modeling on

Twitter. PLOS ONE, 15(9), e0239441. https://doi.org/10.1371/journal.pone.0239441 Zulhanif, Sudartianto, Tantular, B., & Jaya, I. G. N. M. (2017). Aplikasi Latent Dirichlet Allocation

(LDA) pada Clustering Data Teks. Jurnal Logika, 7(1), 46–51.

Zuliarso, E., & Mustofa, K. (2009). Crawling Web berdasarkan Ontology. Jurnal Teknologi

Informasi DINAMIK, XIV(2), 105–112. https://doi.org/10.35315/dinamik.v14i2.97

Downloads

Published

2022-01-25

How to Cite

Santoso, K. R. A. P., Husna, A., Putri, N. W., & Rakhmawati, N. A. (2022). Analisis Topik Tagar Covidindonesia pada Instagram Menggunakan Latent Dirichlet Allocation. JISKA (Jurnal Informatika Sunan Kalijaga), 7(1), 1–9. https://doi.org/10.14421/jiska.2022.7.1.1-9