Analisis Topik Tagar Covidindonesia pada Instagram Menggunakan Latent Dirichlet Allocation
DOI:
https://doi.org/10.14421/jiska.2022.7.1.1-9Keywords:
Data Crawling, Instagram, Latent Dirichlet Allocation, Covid Indonesia, Topic ModelingAbstract
In this era, technology is increasingly sophisticated, this is evidenced by the number of people using the internet via cell phones, laptops, and other communication tools. One of the developments of this technology is social media such as Instagram. Along with technological developments, Instagram users can upload and share photos and videos using hashtags (#) so that other users can find the results of their posts. Instagram has now become one of the social media used by more than 1 billion people in the world. In this study, the authors wanted to know the dominant topics discussed through the hashtag covidindonesia. This research was conducted using the Latent Dirichlet Allocation (LDA) method. The analysis was carried out after doing text mining on 84 captions from various users on Instagram. To determine the optimal number of topics, by looking at the value of perplexity and topic coherence. The results obtained are the top 5 topics that are the content material in the uploaded video. These topics include covidindonesia, covid_19, pandemics in Indonesia, and discussion of covid-19 virus mutations.
References
Abdul Talib, Y. Y., & Mat Saat, R. (2017). Social proof in social media shopping: An experimental design research. SHS Web of Conferences, 34, 02005. https://doi.org/10.1051/shsconf/20173402005
Alfanzar, A. I., Khalid, K., & Rozas, I. S. (2020). Topic Modelling Skripsi Menggunakan Metode Latent Diriclhet Allocation. JSiI (Jurnal Sistem Informasi), 7(1), 7. https://doi.org/10.30656/jsii.v7i1.2036
Azizah, K. N. (2020). Kronologi 2 Pasien Pertama Virus Corona COVID-19 di Indonesia. DetikHealth. https://health.detik.com/berita-detikhealth/d-4922758/kronologi-2-pasien- pertama-virus-corona-covid-19-di-indonesia
Boer, K. M., Pratiwi, M. R., & Muna, N. (2020). Analisis Framing Pemberitaan Generasi Milenial dan Pemerintah Terkait Covid-19 di Media Online. Communicatus: Jurnal Ilmu Komunikasi, 4(1), 85–104. https://doi.org/10.15575/cjik.v4i1.8277
Carman, A. (2018). Instagram now has 1 billion users worldwide. The Verge. https://www.theverge.com/2018/6/20/17484420/instagram-users-one-billion-count
Computing for the Social Science. (2021). Topic modeling. Computing for the Social Science. https://cfss.uchicago.edu/notes/topic-modeling/
Eka Sembodo, J., Budi Setiawan, E., & Abdurahman Baizal, Z. (2016). Data Crawling Otomatis pada Twitter. INDOSC 2016, October, 11–16. https://doi.org/10.21108/INDOSC.2016.111
Harjanta, A. T. J. (2015). Preprocessing Text untuk Meminimalisir Kata yang Tidak Berarti dalam Proses Text Mining. Jurnal Informatika UPGRIS, 1(Juni), 1–9.
Husna, A., Santoso, K. R. A. P., Putri, N. W., & Rakhmawati, N. A. (2020). asmaul- husna/covidindonesia-LDA: Final | Zenodo. https://doi.org/10.5281/zenodo.4679443
Ibrahim, I. S. (2018). Kritik Budaya Komunikasi, Budaya, Media, dan Gaya Hidup Dalam Proses Demokratisasi di Indonesia (S. O. Pavitasari (ed.)). Jalasutra.
Jasmir. (2016). Implementasi Teknik Data Cleaning dan Teknik Roughset pada Data Tidak Lengkap dalam Data Mining. Seminar Nasional APTIKOM (SEMNASTIKOM), 1(1), 99–106. Naury, C., Fudholi, D. H., & Hidayatullah, A. F. (2021). Topic Modelling pada Sentimen Terhadap Headline Berita Online Berbahasa Indonesia Menggunakan LDA dan LSTM. JURNAL
MEDIA INFORMATIKA BUDIDARMA, 5(1), 24. https://doi.org/10.30865/mib.v5i1.2556 Nugraha, B., & Akbar, M. F. (2019). Perilaku Komunikasi Pengguna Aktif Instagram. Jurnal
Manajemen Komunikasi, 2(2), 95. https://doi.org/10.24198/jmk.v2i2.21330
Nurlayli, A., & Nasichuddin, M. A. (2019). Topik Modeling Penelitian Dosen JPTEI UNY pada Google Scholar Menggunakan Latent Dirichlet Allocation. Elinvo (Electronics, Informatics,
and Vocational Education), 4(2), 154–161. https://doi.org/10.21831/elinvo.v4i2.28254 Putra, K. B., & Kusumawardani, R. P. (2017). Analisis Topik Informasi Publik Media Sosial di Surabaya Menggunakan Pemodelan Latent Dirichlet Allocation (LDA). Jurnal Teknik ITS,
(2). https://doi.org/10.12962/j23373539.v6i2.23205
Rahmawati, A., Nikmah, N. L., Perwira, R. D. A., & Rakhmawati, N. A. (2021). Analisis topik
konten channel YouTube K-pop Indonesia menggunakan Latent Dirichlet Allocation.
Teknologi, 11(1), 16–25. https://doi.org/10.26594/teknologi.v11i1.2155
Rangkuti, M. D. E. (2020). Analisis topik komentar video beberapa akun youtube e-commerce
indonesia menggunakan metode latent dirichlet allocation. UIN Syarif Hidayatullah.
Xue, J., Chen, J., Chen, C., Zheng, C., Li, S., & Zhu, T. (2020). Public discourse and sentiment during the COVID 19 pandemic: Using Latent Dirichlet Allocation for topic modeling on
Twitter. PLOS ONE, 15(9), e0239441. https://doi.org/10.1371/journal.pone.0239441 Zulhanif, Sudartianto, Tantular, B., & Jaya, I. G. N. M. (2017). Aplikasi Latent Dirichlet Allocation
(LDA) pada Clustering Data Teks. Jurnal Logika, 7(1), 46–51.
Zuliarso, E., & Mustofa, K. (2009). Crawling Web berdasarkan Ontology. Jurnal Teknologi
Informasi DINAMIK, XIV(2), 105–112. https://doi.org/10.35315/dinamik.v14i2.97
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Kevin Rafi Adjie Putra Santoso, Asmaul Husna, Nadia Widyawati Putri, Nur Aini Rakhmawati
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.