Implementasi Closeness Centrality dalam Analisis Penyanyi Indonesia di DBpedia Indonesia

Authors

  • Nur Aini Rakhmawati Institut Teknologi Sepuluh Nopember Surabaya http://orcid.org/0000-0002-1321-4564
  • Ahmad Naufal Muzakki Institut Teknologi Sepuluh Nopember Surabaya
  • Luthfi Lazuardi Institut Teknologi Sepuluh Nopember Surabaya

DOI:

https://doi.org/10.14421/jiska.2021.61-03

Abstract

Indonesian singers have a diverse musical genre. They also origin from several regions in Indonesia. This study analyzes the relationships between singers, genre, and origin of the singer using the Closeness Centrality algorithm. Data are retrieved by using a SPARQL query on DBpedia Indonesia. The generated graph produces a density value of 0.01. The results of the Closeness Centrality calculation shows that more than 50% out of 268 singers had scores above 30%.

References

Abele, A., McCrae, J. P., & Buitelaar, P. (2017). An Evaluation Dataset for Linked Data Profiling. Lecture Notes in Computer Science, 1–9. https://doi.org/10.1007/978-3-319-59888-8_1

Baek, S. I., & Bae, S. H. (2019). The Effect of Social Network Centrality on Knowledge Sharing. Journal of Service Science Research, 11(2), 183–202. https://doi.org/10.1007/s12927-019-0009-2

Bizer, C., Heath, T., & Berners-Lee, T. (2011). Linked Data: The Story so Far. In Semantic Services, Interoperability and Web Applications: Emerging Concepts (pp. 205–227). IGI Global.

Chen, J., Jiang, Y., & Yang, M. (2019). Collaborative Recommendation for Scenic Spots based on Degree Centrality. 2019 6th International Conference on Systems and Informatics (ICSAI), 611–615. https://doi.org/10.1109/ICSAI48974.2019.9010437

Gaharwar, R. D., & Shah, D. B. (2018). Use of Degree Centrality Principle in Deciding the Future Leader of the Terrorist Network. International Journal of Scientific Research in Science and Technology (IJSRST), 4(9), 303–310.

Gomes Jr., L., & Frizzon, G. (2019). Fake News and Brazilian politics – temporal investigation based on semantic annotations and graph analysis. XXXIV Simpósio Brasileiro de Banco de Dados, 169–174. https://doi.org/10.5753/sbbd.2019.8818

Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 855–864. https://doi.org/10.1145/2939672.2939754

Harris, S., Seaborne, A., & Prud’hommeaux, E. (2013). SPARQL 1.1 Query Language. W3C.

Kolesnikov, V., Anikin, V., Mosolova, E., Faizliev, A., Mironov, S., Zemlyanskaya, M., Pleshakov, M., & Sidorov, S. (2019). Food Chain Analysis Based on Graph Centrality Indicators. Journal of Physics: Conference Series, 1334, 1–11. https://doi.org/10.1088/1742-6596/1334/1/012004

Needham, M., & Hodler, A. E. (2019). Graph Algorithms: Practical Examples in Apache Spark and Neo4j (1st ed.). O’Reilly Media.

Perwiradewa, A., Rofiif, A. N., & Rakhmawati, N. A. (2020). Visualisasi Pemain Sepak Bola Indonesia pada DBPedia dengan menggunakan Node2Vec dan Closeness Centrality. Jurnal Buana Informatika, 11(2), 104–111. https://doi.org/10.24002/jbi.v11i2.3346

Rakhmawati, N. A. (2015). Semantic Web dan Linked Data (Yono (ed.); 1st ed.). Sibuku Media.

Rakhmawati, N. A. (2020). nurainir/Penyanyi-Centrality: submittojiska. https://doi.org/10.5281/ZENODO.3956065

Shaikh, M. A., & Jiaxin, W. (2006). Investigative Data Mining: Identifying Key Nodes in Terrorist Networks. 2006 IEEE International Multitopic Conference, 201–206. https://doi.org/10.1109/INMIC.2006.358163

Zhang, J., & Luo, Y. (2017). Degree Centrality, Betweenness Centrality, and Closeness Centrality in Social Network. 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017), 300–303. https://doi.org/10.2991/msam-17.2017.68

Downloads

Published

2021-01-20

How to Cite

Rakhmawati, N. A., Muzakki, A. N., & Lazuardi, L. (2021). Implementasi Closeness Centrality dalam Analisis Penyanyi Indonesia di DBpedia Indonesia. JISKA (Jurnal Informatika Sunan Kalijaga), 6(1), 21–28. https://doi.org/10.14421/jiska.2021.61-03

Most read articles by the same author(s)