Analisis Sentimen Tweet Tentang UU Cipta Kerja Menggunakan Algoritma SVM Berbasis PSO

Authors

  • Trifebi Shina Sabrila Universitas Muhammadiyah Malang
  • Yufis Azhar Universitas Muhammadiyah Malang
  • Christian Sri Kusuma Aditya Universitas Muhammadiyah Malang

DOI:

https://doi.org/10.14421/jiska.2022.7.1.10-19

Keywords:

Sentiment Analysis, Twitter, UU Cipta Kerja, SVM, PSO

Abstract

Support Vector Machine (SVM) is one of the most widely used classification algorithms for sentiment analysis and has been shown to provide satisfactory performance. However, despite its advantages, the SVM algorithm still has weaknesses in selecting the right SVM parameters to optimize the performance. In this study, sentiment analysis was done with the use of data called tweets about Undang-Undang Cipta Kerja which reap many pros and cons by the people in Indonesia, especially the laborers. The classification method used in this study is the Support Vector Machine algorithm which is optimized using the Particle Swarm Optimization method for the SVM parameters selection in the hope of optimizing the performance generated by the SVM algorithm in sentiment analysis. The results of the study using 10 k-fold cross-validations using the SVM algorithm resulted in an accuracy of 92,99%, a precision of 93,24%, and a recall of 93%. Meanwhile, the SVM and PSO algorithms produce an accuracy of 95%, precision of 95,08%, and recall of 94,97%. The results show that the Particle Swarm Optimization method can overcome the weaknesses of the Support Vector Machine algorithm in the problem of parameter selection and has succeeded in improving the resulting performance where the SVM-PSO is more superior to SVM without optimization in sentiment analysis.

References

Al Rivan, M. E., Rachmat, N., & Ayustin, M. R. (2020). Klasifikasi Jenis Kacang-Kacangan Berdasarkan Tekstur Menggunakan Jaringan Syaraf Tiruan. Jurnal Komputer Terapan, 6(1), 89–98. https://doi.org/10.35143/jkt.v6i1.3546

Alasadi, S. A., & Bhaya, W. S. (2017). Review of Data Preprocessing Techniques in Data Mining. In Journal of Engineering and Applied Sciences (Vol. 12, Issue 16, pp. 4102–4107). https://doi.org/10.3923/jeasci.2017.4102.4107

Arsi, P., Wahyudi, R., & Waluyo, R. (2021). Optimasi SVM Berbasis PSO pada Analisis Sentimen Wacana Pindah Ibu Kota Indonesia. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 231–237. https://doi.org/10.29207/resti.v5i2.2698

Basari, A. S. H., Hussin, B., Ananta, I. G. P., & Zeniarja, J. (2013). Opinion Mining of Movie Review using Hybrid Method of Support Vector Machine and Particle Swarm Optimization. Procedia Engineering, 53, 453–462. https://doi.org/10.1016/j.proeng.2013.02.059

Deng, X., Liu, Q., Deng, Y., & Mahadevan, S. (2016). An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Information Sciences, 340–341, 250–261. https://doi.org/10.1016/j.ins.2016.01.033

Godara, N., & Kumar, S. (2019). Opinion Mining using Machine Learning Techniques. International Journal of Engineering and Advanced Technology, 9(2), 4287–4292. https://doi.org/10.35940/ijeat.B4108.129219

Hayatin, N., Marthasari, G. I., & Nuarini, L. (2020). Optimization of Sentiment Analysis for Indonesian Presidential Election using Naive Bayes and Particle Swarm Optimization. Jurnal Online Informatika, 5(1), 81–88. https://doi.org/10.15575/join.v5i1.558

Iqbal, F., Hashmi, J. M., Fung, B. C. M., Batool, R., Khattak, A. M., Aleem, S., & Hung, P. C. K. (2019). A Hybrid Framework for Sentiment Analysis Using Genetic Algorithm Based Feature Reduction. IEEE Access, 7(c), 14637–14652. https://doi.org/10.1109/ACCESS.2019.2892852

Jo, V. (2019). Introduction. Seminars in Diagnostic Pathology, 36(2), 83–84. https://doi.org/10.1053/j.semdp.2019.02.002

Kiranyaz, S., Ince, T., & Gabbouj, M. (2014). Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition. Springer.

Kristiyanti, D. A., & Wahyudi, M. (2017). Feature selection based on Genetic algorithm, particle swarm optimization and principal component analysis for opinion mining cosmetic product review. 2017 5th International Conference on Cyber and IT Service Management (CITSM), 1–6. https://doi.org/10.1109/CITSM.2017.8089278

Liu, Y., Wang, G., Chen, H., Dong, H., Zhu, X., & Wang, S. (2011). An improved particle swarm optimization for feature selection. Journal of Bionic Engineering, 8(2), 191–200. https://doi.org/10.1016/S1672-6529(11)60020-6

Prasetyaningrum, I., Fathoni, K., & Priyantoro, T. T. J. (2020). Application of recommendation system with AHP method and sentiment analysis. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18(3), 1343. https://doi.org/10.12928/telkomnika.v18i3.14778

Que, V. K. S., Iriani, A., & Purnomo, H. D. (2020). Analisis Sentimen Transportasi Online Menggunakan Support Vector Machine Berbasis Particle Swarm Optimization. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi, 9(2), 162–170. https://doi.org/10.22146/jnteti.v9i2.102

Rana, S., & Singh, A. (2016). Comparative analysis of sentiment orientation using SVM and Naive Bayes techniques. 2016 2nd International Conference on Next Generation Computing Technologies (NGCT), October, 106–111. https://doi.org/10.1109/NGCT.2016.7877399

Rekha, V., Raksha, R., Patil, P., Swaras, N., & Rajat, G. L. (2019). Sentiment Analysis on Indian Government Schemes Using Twitter data. 2019 International Conference on Data Science and Communication (IconDSC), 1–5. https://doi.org/10.1109/IconDSC.2019.8817036

Risawati, R., Ernawati, S., & Maryani, I. (2020). Optimasi Parameter PSO Berbasis SVM untuk Analisis Sentimen Review Jasa Maskapai Penerbangan Berbahasa Inggris. EVOLUSI : Jurnal Sains Dan Manajemen, 8(2), 64–71. https://doi.org/10.31294/evolusi.v8i2.9248

Rustam, F., Ashraf, I., Mehmood, A., Ullah, S., & Choi, G. S. (2019). Tweets Classification on the Base of Sentiments for US Airline Companies. Entropy, 21(11), 1078. https://doi.org/10.3390/e21111078

Sharma, A., & Daniels, A. (2020). Tweets Sentiment Analysis via Word Embeddings and Machine Learning Techniques.

Tineges, R., Triayudi, A., & Sholihati, I. D. (2020). Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM). JURNAL MEDIA INFORMATIKA BUDIDARMA, 4(3), 650. https://doi.org/10.30865/mib.v4i3.2181

Wardhani, N. K., Rezkiani, Kurniawan, S., Setiawan, H., Gata, G., Tohari, S., Gata, W., & Wahyudi, M. (2018). Sentiment analysis article news coordinator minister of maritime affairs using algorithm naive bayes and support vector machine with particle swarm optimization. Journal of Theoretical and Applied Information Technology, 96(24), 8365–8378.

Windha Mega, P. D., & Haryoko. (2019). Optimization Of Parameter Support Vector Machine (SVM) using Genetic Algorithm to Review Go-Jek’s Services. 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 6, 301–304. https://doi.org/10.1109/ICITISEE48480.2019.9003894

Downloads

Published

2022-01-25

How to Cite

Sabrila, T. S., Azhar, Y., & Aditya, C. S. K. (2022). Analisis Sentimen Tweet Tentang UU Cipta Kerja Menggunakan Algoritma SVM Berbasis PSO. JISKA (Jurnal Informatika Sunan Kalijaga), 7(1), 10–19. https://doi.org/10.14421/jiska.2022.7.1.10-19