Segmentasi Pelanggan Berdasarkan Perilaku Penggunaan Kartu Kredit Menggunakan Metode K-Means Clustering

Authors

  • Fatimah Defina Setiti Alhamdani Universitas Muhammadiyah Malang
  • Ananda Ayu Dianti Universitas Muhammadiyah Malang
  • Yufis Azhar Universitas Muhammadiyah Malang

DOI:

https://doi.org/10.14421/jiska.2021.6.2.70-77

Abstract

Credit card is one of the payment media owned by banks in conducting transactions. Credit card issuers provide benefits for banks with interest that must be paid. Credit card issuers also provide losses to banks that have agreed to pay not to pay their credit card bills. To request a loan from the bank, a cluster model is needed. This study, proposing a segmentation system in research using credit cards to determine marketing strategies using the K-Means Clustering method and conducting experiments using the 4 methods namely K-Means, Agglomerative Clustering, GMM, and DBSCAN. Clustering is done using 9000 active credit card user data at banks that have 18 characteristic features. The results of cluster quality accuracy obtained by using the K-Means method are 0.207014 with the number of clusters 3. Based on the results obtained by considering 4 of these methods, the best method for this case is K-Means.

References

Anggara, M., Sujiani, H., & Helfi, N. (2016). Pemilihan Distance Measure Pada K-Means Clustering Untuk Pengelompokkan Member Di Alvaro Fitness. Jurnal Sistem Dan Teknologi Informasi, 1(1), 1–6.

Carneiro, N., Figueira, G., & Costa, M. (2017). A data mining based system for credit-card fraud detection in e-tail. Decision Support Systems, 95(June 2019), 91–101. https://doi.org/10.1016/j.dss.2017.01.002

Dewri, L. V., Islam, M. R., & Saha, N. K. (2016). Behavioral Analysis of Credit Card Users in a Developing Country: A Case of Bangladesh. International Journal of Business and Management, 11(4), 299. https://doi.org/10.5539/ijbm.v11n4p299

Hajar, S., Novany, A. A., Windarto, A. P., Wanto, A., & Irawan, E. (2020). Penerapan K-Means Clustering Pada Ekspor Minyak Kelapa Sawit Menurut Negara Tujuan. 314–318.

Han, P., & Chai, J. (2012). The application of K-means in personal credit analysis. Advanced Materials Research, 403–408, 2461–2464. https://doi.org/10.4028/www.scientific.net/AMR.403-408.2461

Hidayat, A. (2016). Pengertian Data Outlier Univariat dan Multivariat.

Pathak, M. (2018). Introduction to t-SNE.

Purnima, B., & Arvind, K. (2014). EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN. International Journal of Computer Applications, 105(9), 17–24.

Ramadani, M. (2019). PENGARUH ATTITUDE TOWARD MONEY TERHADAP COMPULSIVE BUYING BEHAVIOUR PENGGUNA KARTU KREDIT. Jurnal Ekonomi Vokasi, 2(9), 1689–1699.

Sharma, S. (1996). Applied Multivariate Techniques Subhash Sharma (pp. 1–5).

Siregar, M. H. (2018). Data Mining Klasterisasi Penjualan Alat-Alat Bangunan Menggunakan Metode K-Means (Studi Kasus Di Toko Adi Bangunan). Jurnal Teknologi Dan Open Source, 1(2), 83–91. https://doi.org/10.36378/jtos.v1i2.24

Sumarto, S., Subroto, A., & Arianto, A. (2012). Penggunaan Kartu Kredit Dan Perilaku Belanja Kompulsif: Dampaknya Pada Risiko Gagal Bayar. Jurnal Manajemen Pemasaran, 6(1). https://doi.org/10.9744/pemasaran.6.1.1-7

Tendean, T., Purba, W., & Kom, M. (2020). Analisis Cluster Provinsi Indonesia Berdasarkan Produksi Bahan Pangan Menggunakan Algoritma K-Means. 1(2), 5–11.

Vaishali, V. (2014). Fraud Detection in Credit Card by Clustering Approach. International Journal of Computer Applications, 98(3), 29–32. https://doi.org/10.5120/17164-7225

Younus, Z. S., Mohamad, D., Saba, T., Alkawaz, M. H., Rehman, A., Al-Rodhaan, M., & Al-Dhelaan, A. (2015). Content-based image retrieval using PSO and k-means clustering algorithm. Arabian Journal of Geosciences, 8(8), 6211–6224. https://doi.org/10.1007/s12517-014-1584-7

Downloads

Published

2021-05-03

How to Cite

Alhamdani, F. D. S., Dianti, A. A., & Azhar, Y. (2021). Segmentasi Pelanggan Berdasarkan Perilaku Penggunaan Kartu Kredit Menggunakan Metode K-Means Clustering. JISKA (Jurnal Informatika Sunan Kalijaga), 6(2), 70–77. https://doi.org/10.14421/jiska.2021.6.2.70-77

Issue

Section

Articles