Implementasi Data Augmentation untuk Klasifikasi Sampah Organik dan Non Organik Menggunakan Inception-V3

Authors

  • Rahina Bintang Universitas Muhammadiyah Malang
  • Yufis Azhar Universitas Muhammadiyah Malang

DOI:

https://doi.org/10.14421/jiska.2024.9.3.192-204

Keywords:

Classification, Transfer Learning, Convolutional Neural Network, InceptionV3, Garbage

Abstract

The surge in global waste, particularly in Indonesia, with a total of 36.218 million tons per year, has become an urgent issue. Challenges in waste management are increasingly complex due to the lack of public understanding and awareness in classifying types of waste. One systemic approach to address waste classification issues involves the use of machine learning technology to categorize waste into two main types: organic and non-organic. The data used in this study comes from a Kaggle website dataset comprising 25,500 entries. This research employs a transfer learning approach with the Inception-V3 architecture and data augmentation implementation. Transfer learning is chosen for its proven performance in image data classification, while data augmentation is implemented to introduce diversity to the dataset. The research stages include business understanding, data preprocessing, data augmentation, data modelling, and evaluation. The results show that the use of transfer learning with the Inception-V3 approach and data augmentation implementation achieves an accuracy rate of 94%, which falls into the excellent category.

References

Ahmed, M., Afreen, N., Ahmed, M., Sameer, M., & Ahamed, J. (2023). An inception V3 approach for malware classification using machine learning and transfer learning. International Journal of Intelligent Networks, 4, 11–18. https://doi.org/10.1016/j.ijin.2022.11.005

Fadillah, I., A, L., Kamil, F. El, Shalahuddin, M., Setiawan, I., N, A., M, H., A, N., S, R., & Fikri, K. (2019). Perubahan Pola Pikir Masyarakat tentang Sampah melalui Sosialisasi Pengolahan Sampah Organik dan Non Organik di Dusun Pondok, Kecamatan Gedangsari, Kab. Gunungkidul. Prosiding Konferensi Pengabdian Masyarakat , 1, 239–242. https://sunankalijaga.org/prosiding/index.php/abdimas/article/view/201

Fan, Y., Li, J., Bhatti, U. A., Shao, C., Gong, C., Cheng, J., & Chen, Y. (2023). A Multi-Watermarking Algorithm for Medical Images Using Inception V3 and DCT. Computers, Materials & Continua, 74(1), 1279–1302. https://doi.org/10.32604/cmc.2023.031445

Hidayati, N., Suntoro, J., & Setiaji, G. G. (2021). Perbandingan Algoritma Klasifikasi untuk Prediksi Cacat Software dengan Pendekatan CRISP-DM. Jurnal Sains Dan Informatika, 7(2), 117–126. https://doi.org/10.34128/jsi.v7i2.313

Ibnul Rasidi, A., Pasaribu, Y. A. H., Ziqri, A., & Adhinata, F. D. (2022). Klasifikasi Sampah Organik dan Non-Organik Menggunakan Convolutional Neural Network. Jurnal Teknik Informatika Dan Sistem Informasi, 8(1), 142-149–142 – 149. https://doi.org/10.28932/jutisi.v8i1.4314

InceptionV3. (2015). Google. https://keras.io/api/applications/inceptionv3/

Kartiko, Prima Yudha, A., Dimas Aryanto, N., & Arya Farabi, M. (2022). Klasifikasi Sampah di Saluran Air Menggunakan Algortima CNN. Indonesian Journal of Data and Science, 3(2), 72–81. https://doi.org/10.56705/ijodas.v3i2.33

Kementerian Lingkungan Hidup dan Kehutanan. (2022). SIPSN - Sistem Informasi Pengelolaan Sampah Nasional. Kementerian Lingkungan Hidup Dan Kehutanan. https://sipsn.menlhk.go.id/sipsn/

Lebreton, L., & Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5(1), 6. https://doi.org/10.1057/s41599-018-0212-7

Lin, C., Li, L., Luo, W., Wang, K. C. P., & Guo, J. (2018). Transfer Learning Based Traffic Sign Recognition Using Inception-v3 Model. Periodica Polytechnica Transportation Engineering, 47(3), 242–250. https://doi.org/10.3311/PPtr.11480

Luke, J. J., Joseph, R., & Balaji, M. (2019). IMPACT OF IMAGE SIZE ON ACCURACY AND GENERALIZATION OF CONVOLUTIONAL NEURAL NETWORKS. International Journal of Research and Analytical Reviews, 6(1), 70–80. www.ijrar.org

Mikolajczyk, A., & Grochowski, M. (2018). Data augmentation for improving deep learning in image classification problem. 2018 International Interdisciplinary PhD Workshop (IIPhDW), 117–122. https://doi.org/10.1109/IIPHDW.2018.8388338

Minarno, A. E., Aripa, L., Azhar, Y., & Munarko, Y. (2023). Classification of Malaria Cell Image using Inception-V3 Architecture. JOIV : International Journal on Informatics Visualization, 7(2), 273. https://doi.org/10.30630/joiv.7.2.1301

Minarno, A. E., Hasanuddin, M. Y., & Azhar, Y. (2023). Batik Images Retrieval Using Pre-trained model and K-Nearest Neighbor. JOIV : International Journal on Informatics Visualization, 7(1), 115. https://doi.org/10.30630/joiv.7.1.1299

Nanmaran, R., Srimathi, S., Yamuna, G., Thanigaivel, S., Vickram, A. S., Priya, A. K., Karthick, A., Karpagam, J., Mohanavel, V., & Muhibbullah, M. (2022). Investigating the Role of Image Fusion in Brain Tumor Classification Models Based on Machine Learning Algorithm for Personalized Medicine. Computational and Mathematical Methods in Medicine, 2022(1), 1–13. https://doi.org/10.1155/2022/7137524

NG, K. (2019). Tuned Inception V3 for Recognizing States of Cooking Ingredients. State Recognition Symposium. https://doi.org/10.32555/2019.dl.009

Pei, X., Zhao, Y. hong, Chen, L., Guo, Q., Duan, Z., Pan, Y., & Hou, H. (2023). Robustness of machine learning to color, size change, normalization, and image enhancement on micrograph datasets with large sample differences. Materials & Design, 232, 112086. https://doi.org/10.1016/j.matdes.2023.112086

Rosiana, E., & Perdana, R. (2022). Rancang Bangun Sistem Robot Pemilah Sampah Anorganik dengan Inductive Proximity dan LDR Sebagai Sensor. Building of Informatics, Technology and Science (BITS), 4(2), 1001–1009. https://doi.org/10.47065/bits.v4i2.2017

Schröer, C., Kruse, F., & Gómez, J. M. (2021). A Systematic Literature Review on Applying CRISP-DM Process Model. Procedia Computer Science, 181, 526–534. https://doi.org/10.1016/j.procs.2021.01.199

Sekar, S. (2019). Waste Classification data. Kaggle. https://www.kaggle.com/datasets/techsash/waste-classification-data

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 1–48. https://doi.org/10.1186/S40537-019-0197-0/FIGURES/33

Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on classification performance. Applied Soft Computing, 97, 105524. https://doi.org/10.1016/j.asoc.2019.105524

Tripathi, M. (2021). Analysis of Convolutional Neural Network based Image Classification Techniques. Journal of Innovative Image Processing, 3(2), 100–117. https://doi.org/10.36548/jiip.2021.2.003

Vallez, N., Bueno, G., Deniz, O., & Blanco, S. (2022). Diffeomorphic transforms for data augmentation of highly variable shape and texture objects. Computer Methods and Programs in Biomedicine, 219, 106775. https://doi.org/10.1016/j.cmpb.2022.106775

Wang, Y. H., Ou, Y., Deng, X. D., Zhao, L. R., & Zhang, C. Y. (2019). The Ship Collision Accidents Based on Logistic Regression and Big Data. Proceedings of the 31st Chinese Control and Decision Conference, CCDC 2019, 4438–4440. https://doi.org/10.1109/CCDC.2019.8832686

Widodo, A. E., & Suleman, S. (2020). Otomatisasi Pemilah Sampah Berbasis Arduino Uno. Indonesian Journal on Software Engineering (IJSE), 6(1), 12–18. https://doi.org/10.31294/ijse.v6i1.7781

Zhang, Y. D., Dong, Z., Chen, X., Jia, W., Du, S., Muhammad, K., & Wang, S. H. (2019). Image based fruit category classification by 13-layer deep convolutional neural network and data augmentation. Multimedia Tools and Applications, 78(3), 3613–3632. https://doi.org/10.1007/S11042-017-5243-3/METRICS

Downloads

Published

2024-09-25

How to Cite

Bintang, R., & Azhar, Y. (2024). Implementasi Data Augmentation untuk Klasifikasi Sampah Organik dan Non Organik Menggunakan Inception-V3. JISKA (Jurnal Informatika Sunan Kalijaga), 9(3), 192–204. https://doi.org/10.14421/jiska.2024.9.3.192-204

Similar Articles

You may also start an advanced similarity search for this article.