Algoritma K-Nearest Neighbor untuk Memprediksi Prestasi Mahasiswa Berdasarkan Latar Belakang Pendidikan dan Ekonomi

Authors

  • Daru Prasetyawan UIN Sunan Kalijaga Yogyakarta
  • Rahmadhan Gatra UIN Sunan Kalijaga Yogyakarta

DOI:

https://doi.org/10.14421/jiska.2022.7.1.56-67

Keywords:

Academic Performance, K-NN, Pearson Correlation, Classification

Abstract

Student academic performance is one measure of success in higher education. Prediction of student academic performance is important because it can help in decision-making. K-Nearest Neighbor (K-NN) algorithm is a method that can be used to predict it. Normalization is needed to scale the attribute value, so the data are in a smaller range than the actual data. Feature selection is used to eliminate irrelevant features. Data cleaning from outliers in the dataset aims to delete data that can affect the classification process. In the classification process, the dataset is divided into a training set by 80% and a validation set by 20% using the cross-validation method. The classification model that is formed is tested using data that is separate from the training data and is evaluated using a confusion matrix. As an evaluation, the K-NN model has 95.85% average accuracy, 95.97% average precision, and 95.84% average recall.

References

Anusha, P. V., Anuradha, C., Murty, P. S. R. C., & Kiran, C. S. (2019). Detecting Outliers in High Dimensional Data Sets using Z-Score Methodology. International Journal of Innovative Technology and Exploring Engineering, 9(1), 48–53. https://doi.org/10.35940/ijitee.A3910.119119

Chollet, F. (2017). Deep Learning with Python. Manning Publications.

Dey, A. (2016). Machine Learning Algorithms : A Review. International Journal of Computer Science and Information Technologies, 7(3), 1174–1179.

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2018). Feature Selection. ACM Computing Surveys, 50(6), 1–45. https://doi.org/10.1145/3136625

Linawati, S., Nurdiani, S., Handayani, K., & Latifah. (2020). Prediksi Prestasi Akademik Mahasiswa Menggunakan Algoritma Random Forest dan C4.5. 8(1), 6–13. https://doi.org/10.31294/jki.v8i1.7827

Lubis, A. R., Lubis, M., & Khowarizmi, A.-. (2020). Optimization of distance formula in K-Nearest Neighbor method. Bulletin of Electrical Engineering and Informatics, 9(1), 326–338. https://doi.org/10.11591/eei.v9i1.1464

Muhammad, I., & Yan, Z. (2015). Supervised Machine Learning Approaches: A Survey. ICTACT Journal on Soft Computing, 05(03), 946–952. https://doi.org/10.21917/ijsc.2015.0133

Mustakim, M., & Oktaviani, G. (2016). Algoritma K-Nearest Neighbor Classification Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa. Jurnal Sains, Teknologi, Dan Industri, 13(2), 195–202. https://doi.org/10.24014/sitekin.v13i2.1688

Nasution, D. A., Khotimah, H. H., & Chamidah, N. (2019). Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN. Computer Engineering, Science and System Journal, 4(1), 78. https://doi.org/10.24114/cess.v4i1.11458

Patro, S. G. K., & Sahu, K. K. (2015). Normalization: A Preprocessing Stage. IARJSET, 20–22. https://doi.org/10.17148/IARJSET.2015.2305

Purwaningsih, E., & Nurelasari, E. (2021). Penerapan K-Nearest Neighbor Untuk Klasifikasi Tingkat Kelulusan Pada Siswa. Syntax: Jurnal Informatika, 10(01), 46–55.

Reddy, R. V. K., & Babu, U. R. (2018). A Review on Classification Techniques in Machine Learning. International Journal of Advance Research in Science and Engineering, 7(3), 40–47.

Romadloni, N. T., & Hilman F Pardede. (2019). Seleksi Fitur Berbasis Pearson Correlation Untuk Optimasi Opinion Mining Review Pelanggan. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(3), 505–510. https://doi.org/10.29207/resti.v3i3.1189

Rupesh, G., & Choudaiah, S. (2019). Artificial Intelligence and its Role in Near Future. International Journal of Science Research (IJSR), 8(3), 893–898.

Sabna, E., & Muhardi, M. (2016). Penerapan Data Mining Untuk Memprediksi Prestasi Akademik Mahasiswa Berdasarkan Dosen, Motivasi, Kedisiplinan, Ekonomi, dan Hasil Belajar. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, 2(2), 41. https://doi.org/10.24014/coreit.v2i2.2392

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002

Susanto, H., & Sudiyatno, S. (2014). Data mining untuk memprediksi prestasi siswa berdasarkan sosial ekonomi, motivasi, kedisiplinan dan prestasi masa lalu. Jurnal Pendidikan Vokasi, 4(2), 222–231. https://doi.org/10.21831/jpv.v4i2.2547

Downloads

Published

2022-01-25

How to Cite

Prasetyawan, D., & Gatra, R. (2022). Algoritma K-Nearest Neighbor untuk Memprediksi Prestasi Mahasiswa Berdasarkan Latar Belakang Pendidikan dan Ekonomi. JISKA (Jurnal Informatika Sunan Kalijaga), 7(1), 56–67. https://doi.org/10.14421/jiska.2022.7.1.56-67