Algoritma K-Nearest Neighbor untuk Memprediksi Prestasi Mahasiswa Berdasarkan Latar Belakang Pendidikan dan Ekonomi
DOI:
https://doi.org/10.14421/jiska.2022.7.1.56-67Keywords:
Academic Performance, K-NN, Pearson Correlation, ClassificationAbstract
Student academic performance is one measure of success in higher education. Prediction of student academic performance is important because it can help in decision-making. K-Nearest Neighbor (K-NN) algorithm is a method that can be used to predict it. Normalization is needed to scale the attribute value, so the data are in a smaller range than the actual data. Feature selection is used to eliminate irrelevant features. Data cleaning from outliers in the dataset aims to delete data that can affect the classification process. In the classification process, the dataset is divided into a training set by 80% and a validation set by 20% using the cross-validation method. The classification model that is formed is tested using data that is separate from the training data and is evaluated using a confusion matrix. As an evaluation, the K-NN model has 95.85% average accuracy, 95.97% average precision, and 95.84% average recall.
References
Anusha, P. V., Anuradha, C., Murty, P. S. R. C., & Kiran, C. S. (2019). Detecting Outliers in High Dimensional Data Sets using Z-Score Methodology. International Journal of Innovative Technology and Exploring Engineering, 9(1), 48–53. https://doi.org/10.35940/ijitee.A3910.119119
Chollet, F. (2017). Deep Learning with Python. Manning Publications.
Dey, A. (2016). Machine Learning Algorithms : A Review. International Journal of Computer Science and Information Technologies, 7(3), 1174–1179.
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2018). Feature Selection. ACM Computing Surveys, 50(6), 1–45. https://doi.org/10.1145/3136625
Linawati, S., Nurdiani, S., Handayani, K., & Latifah. (2020). Prediksi Prestasi Akademik Mahasiswa Menggunakan Algoritma Random Forest dan C4.5. 8(1), 6–13. https://doi.org/10.31294/jki.v8i1.7827
Lubis, A. R., Lubis, M., & Khowarizmi, A.-. (2020). Optimization of distance formula in K-Nearest Neighbor method. Bulletin of Electrical Engineering and Informatics, 9(1), 326–338. https://doi.org/10.11591/eei.v9i1.1464
Muhammad, I., & Yan, Z. (2015). Supervised Machine Learning Approaches: A Survey. ICTACT Journal on Soft Computing, 05(03), 946–952. https://doi.org/10.21917/ijsc.2015.0133
Mustakim, M., & Oktaviani, G. (2016). Algoritma K-Nearest Neighbor Classification Sebagai Sistem Prediksi Predikat Prestasi Mahasiswa. Jurnal Sains, Teknologi, Dan Industri, 13(2), 195–202. https://doi.org/10.24014/sitekin.v13i2.1688
Nasution, D. A., Khotimah, H. H., & Chamidah, N. (2019). Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN. Computer Engineering, Science and System Journal, 4(1), 78. https://doi.org/10.24114/cess.v4i1.11458
Patro, S. G. K., & Sahu, K. K. (2015). Normalization: A Preprocessing Stage. IARJSET, 20–22. https://doi.org/10.17148/IARJSET.2015.2305
Purwaningsih, E., & Nurelasari, E. (2021). Penerapan K-Nearest Neighbor Untuk Klasifikasi Tingkat Kelulusan Pada Siswa. Syntax: Jurnal Informatika, 10(01), 46–55.
Reddy, R. V. K., & Babu, U. R. (2018). A Review on Classification Techniques in Machine Learning. International Journal of Advance Research in Science and Engineering, 7(3), 40–47.
Romadloni, N. T., & Hilman F Pardede. (2019). Seleksi Fitur Berbasis Pearson Correlation Untuk Optimasi Opinion Mining Review Pelanggan. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(3), 505–510. https://doi.org/10.29207/resti.v3i3.1189
Rupesh, G., & Choudaiah, S. (2019). Artificial Intelligence and its Role in Near Future. International Journal of Science Research (IJSR), 8(3), 893–898.
Sabna, E., & Muhardi, M. (2016). Penerapan Data Mining Untuk Memprediksi Prestasi Akademik Mahasiswa Berdasarkan Dosen, Motivasi, Kedisiplinan, Ekonomi, dan Hasil Belajar. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, 2(2), 41. https://doi.org/10.24014/coreit.v2i2.2392
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002
Susanto, H., & Sudiyatno, S. (2014). Data mining untuk memprediksi prestasi siswa berdasarkan sosial ekonomi, motivasi, kedisiplinan dan prestasi masa lalu. Jurnal Pendidikan Vokasi, 4(2), 222–231. https://doi.org/10.21831/jpv.v4i2.2547
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Daru Prasetyawan, Rahmadhan Gatra
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.