Penentuan Kelayakan Masyarakat Miskin Penerima Bantuan Menggunakan Metode Naïve Bayes (Studi Kasus: Kabupaten Penajam Paser Utara)
DOI:
https://doi.org/10.14421/jiska.2023.8.1.36-49Keywords:
Classification, Poor Society, Laplace Correction, Data Mining, Naïve BayesAbstract
Contents Poverty is the inability to meet the necessities of life, such as food, clothing, and shelter. The poor have an average monthly per capita expenditure below the poverty line. The case of poverty in Indonesia is still unresolved; the Government continues to try to give the best to the entire community so that the problem of poverty can at least continue to decrease. One form of government concern for the poor is the assistance program provided to the poor. This study will classify based on data from the North Penajam Paser (PPU) community obtained from the results of the National Socio-Economic Survey (Susenas) to know how the Naïve Bayes method is in determining the eligibility of the poor recipients of assistance. Based on the research that has been carried out, a system for determining the poor recipients of assistance is produced, where the test results get the highest accuracy in the third scenario, namely 60% or 328 training data and 40% or 218 test data, where the accuracy obtained is 77.98%.
References
Aji, A. (2019). Penerapan Metode Naive Bayes untuk Mengklasifikasi Kelayakan Penerima Bantuan Beras Miskin (Studi Kasus: Kantor Kelurahan Desa Tegalyoso) [Universitas Teknologi Yogyakarta]. http://eprints.uty.ac.id/2660/
Annur, H. (2018). Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes. ILKOM Jurnal Ilmiah, 10(2), 160–165. https://doi.org/10.33096/ilkom.v10i2.303.160-165
Arifando, R., Hidayat, N., & Soebroto, A. A. (2017). Klasifikasi Calon Penerima Bantuan Keluarga Miskin Menggunakan Metode Learning Vector Quantization (LVQ) (Studi Kasus: Daerah Kecamatan Mlandingan, Situbondo). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(6), 2173–2181. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1625
Badan Pusat Statistik. (2021). Profil Kemiskinan di Penajam Paser Utara Tahun 2021. Badan Pusat Statistik. https://ppukab.bps.go.id/pressrelease/2021/12/22/229/profil-kemiskinan-di-kabupaten-penajam-paser-utara-tahun-2021.html
Fitriani, E. (2020). Perbandingan Algoritma C4.5 dan Naïve Bayes untuk Menentukan Kelayakan Penerima Bantuan Program Keluarga Harapan. SISTEMASI, 9(1), 103. https://doi.org/10.32520/stmsi.v9i1.596
Gunawan, B., Pratiwi, H. S., & Pratama, E. E. (2018). Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 4(2), 113. https://doi.org/10.26418/jp.v4i2.27526
Kurnia, F., Kurniawan, J., Fahmi, I., & Monalisa, S. (2019). Klasifikasi Keluarga Miskin Menggunakan Metode K-Nearest Neighbor Berbasis Euclidean Distance. Seminar Nasional Teknologi Informasi Komunikasi Dan Industri, 230–239. https://ejournal.uin-suska.ac.id/index.php/SNTIKI/article/view/8089
Kurniawan, D. (2020). Pengenalan Machine Learning dengan Python. PT Elex Media Komputindo.
Maarif, M. R. (2016). Perbandingan Naïve Bayes Classifier dan Support Vector Machine untuk Klasifikasi Judul Artikel. JISKA (Jurnal Informatika Sunan Kalijaga), 1(2), 90–93. https://doi.org/10.14421/jiska.2016.12-05
Muljono, Artanti, D. P., Syukur, A., Prihandono, A., & Setiadi, D. R. I. M. (2018). Analisa Sentimen Untuk Penilaian Pelayanan Situs Belanja Online Menggunakan Algoritma Naïve Bayes. 8–9.
Nastuti, A., & Harahap, S. Z. (2019). Teknik Data Mining untuk Penentuan Paket Hemat Sembako dan Kebutuhan Harian Dengan Menggunakan Algoritma FP-Growth (Studi Kasus di Ulfamart Lubuk Alung). Jurnal Informatika, 7(3), 111–119. https://doi.org/10.36987/informatika.v7i3.1381
Natuzzuhriyyah, A., Nafisah, N., & Mayasari, R. (2021). Klasifikasi Tingkat Kepuasan Mahasiswa Terhadap Pembelajaran Secara Daring Menggunakan Algoritma Naïve Bayes. JISKA (Jurnal Informatika Sunan Kalijaga), 6(3), 161–170. https://doi.org/10.14421/jiska.2021.6.3.161-170
Novriansyah, M. A. (2018). Pengaruh Pengangguran dan Kemiskinan Terhadap Pertumbuhan Ekonomi di Provinsi Gorontalo. Gorontalo Development Review, 1(1), 59–73. https://doi.org/10.32662/GOLDER.V1I1.115
Nurmayanti, W. P., Saky, D. A. L., Malthuf, M., Gazali, M., & Hirzi, R. H. (2021). Penerapan Naive Bayes dalam Mengklasifikasikan Masyarakat Miskin di Desa Lepak. Geodika: Jurnal Kajian Ilmu Dan Pendidikan Geografi, 5(1), 123–132. https://doi.org/10.29408/geodika.v5i1.3430
Purnama, A. I., Aziz, A., & Sartika Wiguna, A. (2020). Penerapan Data Mining untuk Mengklasifikasi Penerima Bantuan PKH Desa Wae Jare Menggunakan Metode Naïve Bayes. KURAWAL Jurnal Teknologi, Informasi Dan Industri, 3(2), 173–180. https://jurnal.machung.ac.id/index.php/kurawal
Putri, A. C., Hariyanto, F. E., Andini, N. L. E., & Zulkarnaen, Z. C. S. (2021). Klasifikasi Rumah Tangga Miskin di Provinsi Papua Tahun 2017 Menggunakan Metode Naive Bayes. Jurnal Sains Matematika Dan Statistika, 7(1), 89. https://doi.org/10.24014/jsms.v7i1.11924
Ramadani, S., Zannah, N., Ayu, S., Nurhayati, N., Azzahra, F., & Windarto, A. P. (2020). Analisis Data Mining Naive Bayes Klasifikasi Pada Kelayakan Penerima PKH. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 4(1). https://doi.org/10.30865/KOMIK.V4I1.2726
Riyanah, N., & Fatmawati, F. (2021). Penerapan Algoritma Naive Bayes Untuk Klasifikasi Penerima Bantuan Surat Keterangan Tidak Mampu. JTIM : Jurnal Teknologi Informasi Dan Multimedia, 2(4), 206–213. https://doi.org/10.35746/jtim.v2i4.117
Setiawan, D. A., Halilintar, R., & Wahyuniar, L. S. (2021). Penerapan Metode Naive Bayes Untuk Klasifikasi Penentuan Penerima Bantuan PKH. Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), 5(2), 249–254. https://proceeding.unpkediri.ac.id/index.php/inotek/article/view/1137
Sugianto, C. A., & Maulana, F. R. (2019). Algoritma Naïve Bayes Untuk Klasifikasi Penerima Bantuan Pangan Non Tunai ( Studi Kasus Kelurahan Utama ). Techno.Com, 18(4), 321–331. https://doi.org/10.33633/tc.v18i4.2587
Suntoro, J. (2019). Data Mining Algoritma dan Implementasi dengan Pemrograman PHP. PT Elex Media Komputindo. https://elexmedia.id/produk/detail/elexmedia2018-data-mining-algoritma-dan-implementasi-dengan-pemrograman-php/9786020498812
Umami, U. (2013). Cara Pandang dan Upaya Pemerintah dalam Mengurangi Kemiskinan. Jurnal Pembangunan Wilayah & Kota, 9(4), 343. https://doi.org/10.14710/pwk.v9i4.6673
Wati, M., & Hadi, A. (2016). Implementasi Algoritma Naive Bayesian Dalam Penentuan Penerima Program Bantuan Pemerintah. JTRISTE, 3(1), 22–26.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nur Madia, Anindita Septiarini, Heliza Rahmania Hatta, Hamdani, Masna Wati
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.