Voment Electrical (Volt Measuring Tools of Electrical Materials): Voice-activated DC Voltage Meter for the Blind

Physics Education

Authors

  • Moh Lutfi Salim Al Hanani UIN Sunan Kalijaga Yogyakarta
  • Iqlides Ahmad Miyaqi MA Ali Maksum Yogykarta
  • Ricky Armando Putra Universitas Negeri Yogyakarta
  • Winarti UIN Sunan Kalijaga Yogyakarta

DOI:

https://doi.org/10.14421/impulse.2025.51-01

Keywords:

Blind, DC Voltage, Voltmeter, Microcontroller

Abstract

Science learning involves studying natural phenomena in the universe, such as dynamic electricity. Dynamic electricity is a topic that frequently requires measurements during instruction. This presents a challenge for visually impaired students, because they are unable to read the measurement results displayed visually, therefore, innovation in measuring tools with audio output is necessary. Voment Electrical (Electric Voltage Measuring Instrument) is a DC voltage measuring instrument with audio output, which is a development of a digital voltmeter. This tool uses an Arduino Nano as a microcontroller and voltage sensor. The voltage value measured on this tool is output in the form of sound. Therefore, this tool can be an alternative measuring tool in dynamic electricity learning that can overcome the limitations of blind children in making measurements. The objectives of this study are 1) Designing Voment Electrical: a sound-output DC voltage measuring instrument for impaired children on dynamic electricity material, and 2) Testing Product Feasibility. This research is a development research with a 4D research method. Data was collected through evaluation sheets from media and subject-matter experts. Data analysis from the assessment sheets of media experts and material experts is used to determine the quality of the device developed. Based on the research results, the device's quality was rated "Excellent" by both media and subject-matter experts, with average scores of 3.54 and 3.42. Therefore, this voltage measuring tools of electrical materials for visually impaired students is appropriate for teaching dynamic electricity in physics learning.

Downloads

Download data is not yet available.

References

R. Indonesia, Undang-Undang Nomor 20 Tahun 2003 tentang Sistem Pendidikan Nasional. Indoensia, 2003.

P. McCarthy and M. Shevlin, “Opportunities and challenges in secondary education for blind/vision-impaired people in the Republic of Ireland,” Disabil. Soc., vol. 32, no. 7, pp. 1007–1026, Aug. 2017, doi: 10.1080/09687599.2017.1337564.

C. Hayes and M. J. Proulx, “Turning a blind eye? Removing barriers to science and mathematics education for students with visual impairments,” Br. J. Vis. Impair., vol. 42, no. 2, pp. 544–556, Jan. 2023, doi: 10.1177/02646196221149561.

C. A. Supalo, J. R. Humphrey, T. E. Mallouk, H. David Wohlers, and W. S. Carlsen, “Examining the use of adaptive technologies to increase the hands-on participation of students with blindness or low vision in secondary-school chemistry and physics,” Chem. Educ. Res. Pract., vol. 17, no. 4, pp. 1174–1189, 2016, doi: 10.1039/C6RP00141F.

J. J. Chini and E. M. Scanlon, “Teaching Physics with Disabled Learners: A Review of the Literature,” Aug. 10AD, AIP Publishing LLC. doi: 10.1063/9780735425514_001.

M. Holt et al., “Making Physics Courses Accessible for Blind Students: Strategies for Course Administration, Class Meetings, and Course Materials,” Phys. Teach., vol. 57, no. 2, pp. 94–98, Feb. 2019, doi: 10.1119/1.5088469.

S. Linuwih, D. Shahnaz Putri, and P. Asih, “Conceptions and Conceptual Changes of Junior High- School Students in the Topic of Temperature and Heat,” J. Penelit. dan Pengemb. Pendidik. Fis., vol. 8, no. 1, pp. 35–44, 2022, doi: doi.org/10.21009/1.08104.

A. Z. Ilma and H. Kuswanto, “Gravitational Acceleration: Its Determination from Gourami Jumping Motion Using Tracker Application,” Impuls. J. Res. Innov. Phys. Educ., vol. 4, no. 2, pp. 96–106, 2025, doi: 10.14421/impulse.2024.42-03.

M. Paterson, Seeing with the Hands: Blindness, Vision and Touch After Descartes. Edinburgh University Press, 2016. [Online]. Available: http://www.jstor.org/stable/10.3366/j.ctt1bh2kn6

F. R. Rahim, S. Y. Sari, P. D. Sundari, F. Aulia, and N. Fauza, “Interactive design of physics learning media: The role of teachers and students in a teaching innovation,” J. Phys. Conf. Ser., vol. 2309, no. 1, p. 12075, 2022, doi: 10.1088/1742-6596/2309/1/012075.

D. Muliyati, F. Prastiawan, and M. Mutoharoh, “Development of STEM project-based learning student worksheet for Physics learning on renewable energy topic,” J. Phys. Conf. Ser., vol. 2596, no. 1, p. 12078, 2023, doi: 10.1088/1742-6596/2596/1/012078.

Rianti, Gunawan, N. N. S. P. Verawati, and M. Taufik, “The Effect of Problem Based Learning Model Assisted by PhET Simulation on Understanding Physics Concepts,” Lensa J. Kependidikan Fis., vol. 12, no. 1, pp. 28–43, 2024, doi: 10.33394/j-lkf.v12i1.8783.

S. Solmaz, J. L. Dominguez Alfaro, P. Santos, P. Van Puyvelde, and T. Van Gerven, “A practical development of engineering simulation-assisted educational AR environments,” Educ. Chem. Eng., vol. 35, pp. 81–93, 2021, doi: https://doi.org/10.1016/j.ece.2021.01.007.

F. A. Pacala, “the Use of Technology in Teaching Physics To Students With Disabilities: a Systematic Review,” Inf. Technol. Learn. Tools, vol. 104, no. 6, pp. 53–66, 2024, doi: 10.33407/itlt.v104i6.5756.

A. D. Rahmat, H. Kuswanto, I. Wilujeng, and R. Perdana, “Implementation of mobile augmented reality on physics learning in junior high school students,” J. Educ. e-Learning Res., vol. 10, no. 2, pp. 132–140, 2023, doi: 10.20448/jeelr.v10i2.4474.

D. Olugbade, S. S. Oyelere, and F. J. Agbo, “Enhancing junior secondary students’ learning outcomes in basic science and technology through PhET: A study in Nigeria,” Educ. Inf. Technol., vol. 29, no. 11, pp. 14035–14057, 2024, doi: 10.1007/s10639-023-12391-3.

M. S. da Silva, L. A. Heidemann, and R. R. Campomanes, “Combining computational and experimental activities: an alternative using the free fall paradox,” Rev. Bras. Ensino Fis., vol. 45, 2023, doi: 10.1590/1806-9126-RBEF-2023-0082.

M. Tawil and M. A. Said, “Understanding the Newton’s Motion Concept Through Qualitative and Quantitative Teaching,” J. Penelit. Pengemb. Pendidik. Fis., vol. 8, no. 1, pp. 135–154, 2022, doi: 10.21009/1.08113.

S. Budilaksono et al., “Designing an Ultrasonic Sensor Stick Prototype for Blind People,” J. Phys. Conf. Ser., vol. 1471, no. 1, p. 12020, 2020, doi: 10.1088/1742-6596/1471/1/012020.

E. Muzayyanah, A. Megananda, H. P. Darmayanti, and Z. I. Priana, “Development of Digital Distance Measurement Instrument Based on Arduino Uno for Physics Practicum,” Impuls. J. Res. Innov. Phys. Educ., vol. 1, no. 2, pp. 80–88, 2021, doi: 10.14421/impulse.2021.12-03.

A. Battista and D. Torre, “Mixed methods research designs,” Med. Teach., vol. 45, no. 6, pp. 585–587, Jun. 2023, doi: 10.1080/0142159X.2023.2200118.

P. S. Berman, J. Jones, J. R. Udry, and N. L. S. o. A. Health, Research Design: The SAGE Handbook of Political Science. Sage Publications Ltd., 2020.

A. Burns, “In-service teacher education and action research,” in The Routledge Handbook of Language Teacher Action Research, Routledge, 2024.

C. Thrane, Doing Statistical Analysis A Student’s Guide to Quantitative Research. Routledge, 2023.

Sugiyono, Metode Penelitian Kuantitatif Kualitatif dan R&D. Bandung: Alfabeta, 2019.

S. K. Abell, K. Appleton, and D. L. Hanuscin, Handbook of research on science education. Routledge, 2013.

F. F. B. Pals, J. L. J. Tolboom, and C. J. M. Suhre, “Development of a formative assessment instrument to determine students’ need for corrective actions in physics: Identifying students’ functional level of understanding,” Think. Ski. Creat., vol. 50, p. 101387, 2023, doi: https://doi.org/10.1016/j.tsc.2023.101387.

J. E. S. Ningsih, D. Susanti, V. Serevina, and S. Maulana, “Development of Critical Thinking Instrument with Minimum Competency Assessment Characters on Elasticity and Hooke’s Law,” J. Pendidik. Fis. Indones. Vol 20, No 1, 2024, doi: 10.15294/jpfi.v20i1.44038.

E. Mulyatiningsih, Riset Terapan Bidang Pendidikan dan Teknik. Yogyakarta: UNY Press, 2011.

E. P. Widoyoko, Teknik Penyusunan Instrumen Penelitian. Yogyakarta: Pustaka Pelajar, 2012.

M. Novák, J. Kalová, and J. Pech, “Use of the Arduino Platform in Teaching Programming,” in 2018 IV International Conference on Information Technologies in Engineering Education (Inforino), 2018, pp. 1–4. doi: 10.1109/INFORINO.2018.8581788.

R. Inayah, S. S. Cahyati, and M. Y. Pamungkas, “Exploring the Voices of Blind Students in Learning at University,” in The Proceedings of English Language Teaching, Literature, and Translation (ELTLT), Semarang: Universitas Negeri Semarang, 2014.

L. Wijnia, G. Noordzij, L. R. Arends, R. M. J. P. Rikers, and S. M. M. Loyens, “The Effects of Problem-Based, Project-Based, and Case-Based Learning on Students’ Motivation: a Meta-Analysis,” Educ. Psychol. Rev., vol. 36, no. 1, p. 29, 2024, doi: 10.1007/s10648-024-09864-3.

P. Guo, N. Saab, L. S. Post, and W. Admiraal, “A review of project-based learning in higher education: Student outcomes and measures,” Int. J. Educ. Res., vol. 102, p. 101586, 2020, doi: https://doi.org/10.1016/j.ijer.2020.101586.

B. Pratama and E. Istiyono, “Development of a Three-Tier Diagnostic Test Instrument to Identify Students’ Misconceptions on Motion Kinematics Material,” Impuls. J. Res. Innov. Phys. Educ., vol. 4, no. 2, pp. 79–95, 2024, doi: 10.14421/impulse.2023.42-02.

D. Saepuzaman, E. Istiyono, and Haryanto, “Construct validity and reliability of the FundPhysHOTS test for prospective physics teacher,” AIP Conf. Proc., vol. 2734, no. 1, p. 110012, Oct. 2023, doi: 10.1063/5.0155782.

L. S. Ihzaniah, A. Setiawan, and R. W. N. Wijaya, “Perbandingan Kinerja Metode Regresi K-Nearest Neighbor dan Metode Regresi Linear Berganda pada Data Boston Housing,” Jambura J. Probab. Stat., vol. 4, no. 1, pp. 17–29, 2023, doi: 10.34312/jjps.v4i1.18948.

F. H. Hamdanah and D. Fitrianah, “Analisis Performansi Algoritma Linear Regression dengan Generalized Linear Model untuk Prediksi Penjualan pada Usaha Mikra, Kecil, dan Menengah,” J. Nas. Pendidik. Tek. Inform., vol. 10, no. 1, pp. 23–32, 2021, doi: 10.23887/janapati.v10i1.31035.

Downloads

Published

2025-10-23

How to Cite

Al Hanani, M. L. S., Miyaqi, I. A., Putra, R. A., & Winarti. (2025). Voment Electrical (Volt Measuring Tools of Electrical Materials): Voice-activated DC Voltage Meter for the Blind: Physics Education. Impulse: Journal of Research and Innovation in Physics Education, 5(1), 1–14. https://doi.org/10.14421/impulse.2025.51-01