Analisis Sentimen Ulasan Pengguna Aplikasi Alfagift Menggunakan Random Forest

Authors

  • M. Bagus Prayogi Universitas Nurul Huda
  • Gustina Masitoh Universitas Nurul Huda

DOI:

https://doi.org/10.14421/jiska.2025.10.2.158-170

Keywords:

Sentiment Analysis, Alfagift, Random Forest, Text Mining, Review

Abstract

Alfagift is a mobile application developed by Alfamart to support online ordering, featuring promotions, transactions, ordering, and delivery from the nearest point based on the consumer’s address. User feedback on the Google Play Store reveals mixed sentiments, including both positive and negative responses, which developers can use as material to improve the application’s quality. This study focuses on assessing the sentiment of Alfagift app user reviews using the Random Forest algorithm. A total of 4,379 review data points were collected from the Google Play Store and grouped into two categories: positive and negative sentiment. The research steps include data collection, data labeling, data preprocessing, word weighting, dividing the data into training and testing sets, implementing the Random Forest algorithm, and model evaluation. The test results show that the Random Forest algorithm achieves an accuracy of 97.6% and an AUC of 0.98, which falls into the category of excellent classification. This research is expected to contribute to application developers’ understanding of user perceptions, enabling them to improve application quality and increase overall user convenience.

References

Anjani, A. F., Anggraeni, D., & Tirta, I. M. (2023). Implementasi Random Forest Menggunakan SMOTE untuk Analisis Sentimen Ulasan Aplikasi Sister for Students UNEJ. Jurnal Nasional Teknologi dan Sistem Informasi, 9(2), 163–172. https://doi.org/10.25077/TEKNOSI.v9i2.2023.163-172

Arista, D., Sibaroni, Y., & Prasetyo, S. S. (2024). Sentiment Analysis on Twitter (X) Related to Relocating the National Capital Using the IndoBERT Method Using Extraction Features of Chi-Square. Jurnal Media Informatika Budidarma, 8(1), 403–411. https://doi.org/10.30865/mib.v8i1.7198

Helmi, A., Komaladewi, R., Sarasi, V., & Yolanda, L. (2023). Characterizing Young Consumer Online Shopping Style: Indonesian Evidence. Sustainability, 15(5), Article ID: 3988. https://doi.org/10.3390/su15053988

Fadli, M. N., SJ, A. S., & Nafiah, N. (2023). Mekanisme Penggunaan Member Card Alfagift dalam Jual Beli Perspektif Hukum Islam (Studi Kasus di Alfamart Ponorogo). Social Science Academic, 1(2), 29–36. https://doi.org/10.37680/ssa.v1i2.3173

Firdaus, A. (2024). Analisis Sentimen pada Aplikasi Alfagift Menggunakan Metode Naïve Bayes Classifier [UIN Syarif Hidayatullah]. https://repository.uinjkt.ac.id/dspace/handle/123456789/76766

Hanifa, F., Putri, C. H., N, A. F., & Wulansari, A. (2023). Analisis Penerimaan Aplikasi Alfagift di Kota Surabaya Menggunakan Metode Technology Acceptance Model. Jurnal Sains dan Teknologi (JSIT), 3(2), 233–244. https://doi.org/10.47233/jsit.v3i2.835

Hasibuan, S. S., Angraini, A., Saputra, E., & Megawati, M. (2024). Sentimen Analisis Terhadap Fitur Tiktok Shop Menggunakan Naïve Bayes dan K-Nearest Neighbor. Jurnal Media Informatika Budidarma, 8(1), 303–311. https://doi.org/10.30865/mib.v8i1.7238

Jin, Y., Cheng, K., Wang, X., & Cai, L. (2023). A Review of Text Sentiment Analysis Methods and Applications. Frontiers in Business, Economics and Management, 10(1), 58–64. https://doi.org/10.54097/fbem.v10i1.10171

Kadhim, A. (2018). An Evaluation of Preprocessing Techniques for Text Classification. International Journal of Computer Science and Information Security (IJCSIS), 16(6), 22–32. https://sites.google.com/site/ijcsis/all-volumes-issues/vol-16-no-6-june-2018

Komarudin, A., & Hilda, A. M. (2024). Analisis Sentimen Ulasan Aplikasi Identitas Kependudukan Digital pada Play Store Menggunakan Metode Naïve Bayes. Computer Science (CO-SCIENCE), 4(1), 28–36. https://doi.org/10.31294/coscience.v4i1.2955

Nanda, S., Mualfah, D., & Fitri, D. A. (2022). Analisis Sentimen Kepuasan Pengguna Terhadap Layanan Streaming Mola Menggunakan Algoritma Random Forest. Jurnal Aplikasi Teknologi Informasi dan Manajemen (JATIM), 3(2), 210–219. https://doi.org/10.31102/jatim.v3i2.1592

Pahlevi, O., Amrin, A., & Handrianto, Y. (2023). Implementasi Algoritma Klasifikasi Random Forest untuk Penilaian Kelayakan Kredit. Jurnal Infortech, 5(1), 71–76. https://doi.org/10.31294/infortech.v5i1.15829

Perdana, S. A., Florentin, S. F., & Santoso, A. (2022). Analisis Segmentasi Pelanggan Menggunakan K-Means Clustering Studi Kasus Aplikasi Alfagift. Sebatik, 26(2), 446–457. https://doi.org/10.46984/sebatik.v26i2.1991

Pradana, M. (2016). Klasifikasi Bisnis E-Commerce di Indonesia. MODUS, 27(2), 163–174. https://doi.org/10.24002/modus.v27i2.554

Sidauruk, N., Riza, N., & Fatonah, Rd. N. S. (2023). Penggunaan Metode SVM dan Random Forest untuk Analisis Sentimen Ulasan Pengguna Terhadap KAI Access di Google Play Store. JATI (Jurnal Mahasiswa Teknik Informatika), 7(3), 1901–1906. https://doi.org/10.36040/jati.v7i3.6899

Styawati, S., Hendrastuty, N., & Isnain, A. R. (2021). Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja pada Twitter dengan Metode Support Vector Machine. Jurnal Informatika: Jurnal Pengembangan IT, 6(3), 150–155. https://doi.org/10.30591/jpit.v6i3.2870

Syakir, A., & Hasan, F. N. (2023). Analisis Sentimen Masyarakat Terhadap Perilaku Korupsi Pejabat Pemerintah Berdasarkan Tweet Menggunakan Naive Bayes Classifier. Jurnal Media Informatika Budidarma, 7(4), 1796–1805. https://doi.org/10.30865/mib.v7i4.6648

Utami, A. F., Ekaputra, I. A., Japutra, A., & Van Doorn, S. (2022). The Role of Interactivity on Customer Engagement in Mobile E-Commerce Applications. International Journal of Market Research, 64(2), 269–291. https://doi.org/10.1177/14707853211027483

Wicaksono, N. B. A. (2022). Analisis Sentimen Tingkat Kepuasan Pengguna BPJS dengan Metode SentiStrength [Universitas Atma Jaya Yogyakarta]. https://repository.uajy.ac.id/id/eprint/27165/

Wilujeng, D. T., Fatekurohman, M., & Tirta, I. M. (2023). Analisis Risiko Kredit Perbankan Menggunakan Algoritma K-Nearest Neighbor dan Nearest Weighted K-Nearest Neighbor. Indonesian Journal of Applied Statistics, 5(2), 142–148. https://doi.org/10.13057/ijas.v5i2.58426

Downloads

Published

2025-05-31

How to Cite

Prayogi, M. B., & Masitoh, G. (2025). Analisis Sentimen Ulasan Pengguna Aplikasi Alfagift Menggunakan Random Forest. JISKA (Jurnal Informatika Sunan Kalijaga), 10(2), 158–170. https://doi.org/10.14421/jiska.2025.10.2.158-170

Issue

Section

Articles