Analisis Ketertarikan Pengguna Microsoft Excel Online untuk Pengolahan Data Silsilah Keluarga Menggunakan TAM dan TPB
DOI:
https://doi.org/10.14421/jiska.2025.10.3.279-293Keywords:
Technology Acceptance Model, Theory of Planned Behavior, Microsoft Excel Online, Genealogy, FamilyAbstract
The use of web-based applications such as Microsoft Excel Online has increased, including for recording family genealogy data. This study aims to analyze the factors influencing the intention and behavior of using this application based on the Technology Acceptance Model (TAM), Theory of Planned Behavior (TPB), and their combined framework. The constructs examined include perceived ease of use, perceived usefulness, attitude, subjective norm, perceived behavioral control, intention, and behavior. This quantitative study collected primary data through questionnaires distributed to family members using Microsoft Excel Online. Data analysis was conducted using SEM-PLS (Structural Equation Modeling-Partial Least Squares) with the assistance of SmartPLS version 4.1.0.2. The results indicate that perceived ease of use and perceived usefulness positively and significantly affect attitude, while attitude, subjective norm, and perceived behavioral control positively influence behavioral intention. Furthermore, behavioral intention has a positive effect on actual usage behavior. These findings suggest that Microsoft Excel Online is reliable for recording family genealogy data and supports technology acceptance among users.
References
Abidin, A. R., & Nuryana, I. K. D. (2023). Perbandingan Metode Klasifikasi Data Mining untuk Mengukur Tingkat Kepuasan Mahasiswa Terhadap Sistem Informasi Penilaian Nonakademik UNESA (SIPENA). Journal of Emerging Information Systems and Business Intelligence, 4(4), 129–138. https://doi.org/10.26740/jeisbi.v4i4.56966
Aji, H., Irmansyah, D., Wicaksono, A., & Gibran, A. F. (2020). Ukuran Penyebaran Data (Kemiringan & Keruncingan) “Angka Terjangkit DBD Tahun 2008-2017.” https://doi.org/10.31219/osf.io/tym4s
Almuashi, M., Hashim, S. Z. M., Yusoff, N., Syazwan, K. N., & Ghabban, F. (2022). Siamese Convolutional Neural Network and Fusion of the Best Overlapping Blocks for Kinship Verification. Multimedia Tools and Applications, 81(27), 39311–39342. https://doi.org/10.1007/s11042-022-12735-0
Chergui, A., Ouchtati, S., Mavromatis, S., Bekhouche, S., Lashab, M., & Sequeira, J. (2020). Kinship Verification Through Facial Images Using CNN-Based Features. Traitement Du Signal, 37(1), 1–8. https://doi.org/10.18280/ts.370101
Darmayanti, N. W. S., & Sunarianingsih, N. L. P. (2024). Portrait of Students’ Science Process Skills in Science Learning at Elementary School 1 Susut. Dharmas Education Journal (DE_Journal), 5(2), 1183–1193. https://doi.org/10.56667/dejournal.v5i2.1626
Dharma, A. C. L. H., Aknuranda, I., & Rokhmawati, R. I. (2020). Pengujian Usability untuk Aplikasi Silsilah Keluarga FamilySearch Tree dengan Pendekatan Kuantitatif. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 4, 2226–2235. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7572
Dudgeon, P., Blustein, S., Bray, A., Calma, T., McPhee, R., & Ring, I. (2021). Connection Between Family, Kinship and Social and Emotional Wellbeing. https://doi.org/10.25816/jx22-vq08
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis (8th ed.). Cengage Learning.
Hormann, S., Knoche, M., & Rigoll, G. (2020). A Multi-Task Comparator Framework for Kinship Verification. 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), 863–867. https://doi.org/10.1109/FG47880.2020.00106
Iqbal, D. M., Arista, D. N., Salsabila, H., & Nur, S. Q. (2022). Penyuluhan Penggunaan Microsoft Excel dalam Mengolah Laporan Kegiatan Pemberdayaan Kesejahteraan Keluarga di Desa Kertamulya. Proceedings UIN Sunan Gunung Djati Bandung, 2(4), 13–28. https://proceedings.uinsgd.ac.id/index.php/proceedings/article/view/1320
Kartomo, T., Taufik, D. A., Kartutu, S. J., Tenu, M. W., & Sudana, I. W. (2024). Analisis Peran Statistika Terapan Dalam Bidang Bisnis, Kesehatan, dan Lingkungan. Journal of Comprehensive Science, 3(2), 394–402. https://doi.org/10.59188/JCS.V3I2.626
Liu, F., Li, Z., Yang, W., & Xu, F. (2022). Age-Invariant Adversarial Feature Learning for Kinship Verification. Mathematics, 10(3), Article ID: 480. https://doi.org/10.3390/math10030480
Mardiono, A. P., Rosid, M. A., & Busono, S. (2024). Rancang Bangun Sistem Informasi Silsilah Keluarga Berbasis Website Menggunakan Metode Rapid Application Development (RAD). JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 9(4), 1869–1880. https://doi.org/10.29100/jipi.v9i4.5516
Maria, F., & Sutabri, T. (2023). Pengukuran Kualitas Website E-Learning di SMA Muhammadiyah 1 Palembang dengan Metode WebQual. Indonesian Journal of Multidisciplinary on Social and Technology, 1(2), 121–127. https://doi.org/10.31004/ijmst.v1i2.134
Mukherjee, M., Meenpal, T., & Goyal, A. (2022). FuseKin: Weighted Image Fusion Based Kinship Verification Under Unconstrained Age Group. Journal of Visual Communication and Image Representation, 84, 103470. https://doi.org/10.1016/j.jvcir.2022.103470
Nagoro, N., & Wathon, A. (2023). Penggunaan Microsoft Excel dalam Analisis Data Eksperimen pada Pembelajaran Fisika. Sistim Informasi Manajemen, 6(1), 30–46. https://oj.lapamu.com/index.php/sim/article/view/33
Nurfauzan, J. A., & Priyono, A. (2022). Analisis TAM dan TPB dalam Penerimaan Aplikasi Perdagangan Saham Seluler (Mobile) di Kalangan Investor di Indonesia. Selekta Manajemen: Jurnal Mahasiswa Bisnis & Manajemen, 1(4), 79–96. https://journal.uii.ac.id/selma/article/view/24883
Nurleli, S. B., Faturokhman, A., & Ulfah, P. (2023). The Effect of Usefulness and Ease of Use on Behavioral Interest in Using the Microsoft Excel Application with Attitude of Use as a Mediation Variable in SMEs in Banyumas District. Jurnal Riset Akuntansi Soedirman, 2(1), 1–15. https://doi.org/10.32424/1.jras.2023.2.1.7852
Nursita, L., Astina, A., Isakasari, I., & Amiruddin, I. (2021). Efektivitas Penggunaan Microsoft Excel dalam Pengolahan Nilai Rapor Siswa SMA Negeri 11 Bone. Educational Leadership: Jurnal Manajemen Pendidikan, 1(1), 1–9. https://doi.org/10.24252/edu.v1i1.21994
Putra, I. G. C., Manuari, I. A. R., & Puspayanti, N. K. D. (2022). Pengaruh Corporate Governance Terhadap Profitabilitas dan Nilai Perusahaan Manufaktur yang Terdaftar di Bursa Efek Indonesia (BEI). WACANA EKONOMI (Jurnal Ekonomi, Bisnis dan Akuntansi), 21(1), 105–118. https://doi.org/10.22225/we.21.1.2022.105-118
Robinson, J. P., Qin, C., Shao, M., Turk, M. A., Chellappa, R., & Fu, Y. (2021). The 5th Recognizing Families in the Wild Data Challenge: Predicting Kinship from Faces. 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), 01–07. https://doi.org/10.1109/FG52635.2021.9666990
Salsabila, K. L. N., Handayani, J., & Kusuma, S. Y. (2024). Pengaruh Customer Relationship Management dan Kualitas Pelayanan Terhadap Loyalitas Nasabah dengan Kepuasan Sebagai Variabel Mediasi. JIBEMA: Jurnal Ilmu Bisnis, Ekonomi, Manajemen, dan Akuntansi, 2(2), 83–108. https://doi.org/10.62421/jibema.v2i2.86
Samputra, H. (2022). Analisis Deskriptif Statistik Faktor-Faktor Penyebab Kematian Ibu di Provinsi Riau Tahun 2019. Indonesian Council of Premier Statistical Science, 1(1), 26–33. https://doi.org/10.24014/icopss.v1i1.18933
Serraoui, I., Laiadi, O., Ouamane, A., Dornaika, F., & Taleb-Ahmed, A. (2022). Knowledge-Based Tensor Subspace Analysis System for Kinship Verification. Neural Networks, 151, 222–237. https://doi.org/10.1016/j.neunet.2022.03.020
Shadrikov, A. (2020). Achieving Better Kinship Recognition Through Better Baseline. 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), 872–876. https://doi.org/10.1109/FG47880.2020.00137
Sholihin, M., & Ratmono, D. (2021). Analisis SEM-PLS dengan WarpPLS 7.0 untuk Hubungan Nonlinier dalam Penelitian Sosial dan Bisnis (1st ed., Vol. 1). Penerbit Andi.
Siregar, I. A. (2021). Analisis dan Interpretasi Data Kuantitatif. ALACRITY: Journal of Education, 1(2), 39–48. https://doi.org/10.52121/alacrity.v1i2.25
Siroj, R. A., Afgani, W., Fatimah, F., Septaria, D., & Salsabila, G. Z. (2024). Metode Penelitian Kuantitatif Pendekatan Ilmiah untuk Analisis Data. Jurnal Review Pendidikan dan Pengajaran, 7(3), 11279–11289. https://doi.org/10.31004/jrpp.v7i3.32467
Sumarni, E., Adawiah, E. R., & Yurna, Y. (2023). Sarana Berpikir Ilmiah (Bahasa, Logika, Matematika dan Statistika). Jurnal Pendidikan Berkarakter, 1(4), 106–122. https://doi.org/10.51903/pendekar.v1i4.299
Sun, xianglong, Ning, X., & Junman, D. (2022). Using Combined-TAM-TPB Model to Understand Passenger Acceptance of Driverless Bus—A Case from Suzhou, China. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4098799
Tabelessy, W., & Pattiruhu, J. R. (2022). Pengenalan Aplikasi SmartPLS Bagi Mahasiswa Baru Program Studi Magister Manajemen Universitas Pattimura. COMMUNIO: Jurnal Pengabdian Kepada Masyarakat, 1(2), 82–88. https://jurnal.litnuspublisher.com/index.php/jpkm/article/view/25
W, H. D., Nugroho, I., & Siahaan, R. (2021). Aplikasi Silsilah Marga Siahaan (Somba Debata) Berbasis Android. Go Infotech: Jurnal Ilmiah STMIK AUB, 27(1), 85–96. https://doi.org/10.36309/goi.v27i1.147
Henriksson, H. W., & Goedecke, K. (Eds.). (2021). Close Relations. Springer Nature Singapore. https://doi.org/10.1007/978-981-16-0792-9
Wang, M., Shu, X., Feng, J., Wang, X., & Tang, J. (2020). Deep Multi-Person Kinship Matching and Recognition for Family Photos. Pattern Recognition, 105, Article ID: 107342. https://doi.org/10.1016/j.patcog.2020.107342
Wang, W., You, S., Karaoglu, S., & Gevers, T. (2023). A Survey on Kinship Verification. Neurocomputing, 525, 1–28. https://doi.org/10.1016/j.neucom.2022.12.031
Yamin, S. (2021). Tutorial Statistik: SPSS, LISREL, WARPPLS & JASP. Dewangga Energi Internasional.
Yamin, S. (2023). Olah Data Statistik: SMARTPLS 3 SMARTPLS 4 AMOS & STATA (3rd ed.). Dewangga Energi Internasional.
Yan, H., & Song, C. (2021). Multi-Scale Deep Relational Reasoning for Facial Kinship Verification. Pattern Recognition, 110, Article ID: 107541. https://doi.org/10.1016/j.patcog.2020.107541
Yu, J., Li, M., Hao, X., & Xie, G. (2020). Deep Fusion Siamese Network for Automatic Kinship Verification. 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), 892–899. https://doi.org/10.1109/FG47880.2020.00127
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fathur Rachman Nufaily, Maria Ulfah Siregar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.




