Komparasi Distance Measure pada K-Means dalam Klasterisasi Peserta KB Aktif

Authors

  • Mochammad Anshori Institut Teknologi, Sains, dan Kesehatan RS.DR. Soepraoen Kesdam V/BRW
  • Afifah Vera Ferencia Fitria Ningrum Institut Teknologi, Sains, dan Kesehatan RS.DR. Soepraoen Kesdam V/BRW
  • Risqy Siwi Pradini Institut Teknologi, Sains, dan Kesehatan RS.DR. Soepraoen Kesdam V/BRW

DOI:

https://doi.org/10.14421/jiska.5006

Keywords:

K-Means, Clustering, Silhouette Coefficient, Distance Measure, Manhattan

Abstract

The rapid population growth in Indonesia poses significant challenges to public welfare, economic stability, and sustainable development. The Family Planning program aims to regulate population growth through various contraceptive methods; however, participation rates often differ across regions. Understanding these variations is crucial for designing targeted interventions. This study investigates how different distance measures in the K-Means clustering algorithm affect the segmentation quality of KB participants in Kalirejo Village, Lawang District. Eight distance metrics—Euclidean, Manhattan, Minkowski, Chebyshev, Mahalanobis, Bray-Curtis, Canberra, and Cosine—were compared using standardized data from the local BKKBN office (January–September). Cluster validity was evaluated using the Silhouette Coefficient across k=2–10. Results show that the Manhattan distance with k=2 achieved the best clustering quality (SC = 0.7191), effectively distinguishing participant groups by contraceptive method preference. The study highlights the importance of selecting suitable distance measures to improve data-driven policy and decision-making in family planning management.

References

Andriyani, W., Anshori, M., Normawati, D., Pradini, R. S., Zaenudin, M., Harisuddin, M. I., Haris, M. S., Astuty Sitinjak A. A., & Kusuma, W. T. (2024). Matematika pada Kecerdasan Buatan. Tohar Media.

Argiento, R., Filippi-Mazzola, E., & Paci, L. (2025). Model-Based Clustering of Categorical Data Based on the Hamming Distance. Journal of the American Statistical Association, 120(550), 1178–1188. https://doi.org/10.1080/01621459.2024.2402568

Ghosh, A. (2022). Prediction of Diabetes Using Random Forest and XGBoost Classifiers. International Journal of Computer Science Engineering and Information Technology Research (IJCSEITR), 12(1), 19–28.

Hutagalung, J. (2022). Pemetaan Siswa Kelas Unggulan Menggunakan Algoritma K-Means Clustering. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 9(1), 606–620. https://doi.org/10.35957/jatisi.v9i1.1516

Hutagalung, J., & Sonata, F. (2021). Penerapan Metode K-Means untuk Menganalisis Minat Nasabah. Jurnal Media Informatika Budidarma, 5(3), 1187–1194. https://doi.org/10.30865/mib.v5i3.3113

Idrus, A., Tarihoran, N., Supriatna, U., Tohir, A., Suwarni, S., & Rahim, R. (2022). Distance Analysis Measuring for Clustering Using K-Means and Davies Bouldin Index Algorithm. TEM Journal, 11(4), 1871–1876. https://doi.org/10.18421/TEM114-55

Jollyta, D., Prihandoko, P., Priyanto, D., Hajjah, A., & Nora Marlim, Y. (2023). Comparison of Distance Measurements Based on k-Numbers and Its Influence to Clustering. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 23(1), 93–102. https://doi.org/10.30812/matrik.v23i1.3078

Kumala, A. A. S. P. A., & Rahning Putri, L. A. A. (2023). Measure Comparison Distance on K-Means Clustering for Grouping Music on Mood. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), 11(4), 663–674. https://doi.org/10.24843/JLK.2023.v11.i04.p03

Lino, M., Jedo, A., & Adam, C. V. (2021). Identifikasi Faktor-Faktor yang Mempengaruhi Pengambilan Keputusan Pasangan Usia Subur Dalam Mengikuti Program KB (Studi Kasus di Desa Leraboleng Kecamatan Titehena Kabupaten Flores Timur). Jurnal Administrasi dan Demokrasi, 1(2), 101–123. https://doi.org/10.35508/jad.v1i2.5599

Maharani, S., & Yotenka, R. (2024). Pengelompokan Kecamatan di Daerah Istimewa Yogyakarta Berdasarkan Jumlah Pengguna Alat Kontrasepsi Tahun 2022 dengan K-Medoids Cluster. Emerging Statistics and Data Science Journal, 2(2), 222–237. https://doi.org/10.20885/esds.vol2.iss.2.art16

Maulana, P. F. (2020). Upaya Dinas Kesehatan dan Keluarga Berencana dalam Pelaksanaan Kebijakan Keluarga Berencana di Kelurahan Bontang Lestari Kota Bontang. EJournal Ilmu Pemerintahan, 8(3), 741–754. https://ejournal.ip.fisip-unmul.ac.id/site/wp-content/uploads/2021/01/Pungki

Munawar, F., Utami, A. S. D., & Manurung, S. B. T. (2024). Klasterisasi Daerah Peserta KB Aktif di Kabupaten Asahan Menggunakan Metode K-Means. J-Com (Journal of Computer), 4(1), 58–67. https://doi.org/10.33330/j-com.v4i1.3047

Muttaqin, J. A., Harlina, S., S, W., Hakim, L., Anshori, M., Ambarwari, A., Kaunang, F. J., Sandag, G. A., Harizahayu, M. G. F., Ruslau, M. F. V, Prasetio, A., Nasir, K. R., & SIregar, M. N. H. (2023). Data Science dan Pembelajaran Mesin. Yayasan Kita Menulis.

Muttaqin, W. W. W., Munsarif, M., Mandias, G. F., Pungus, S. R., Widarman, A., Hapsari, W. K., Hardiyanti, S. A., Fatkhudin, A., Pasnur, B. E. F., Anshori, M. S., & Saputra, N. (2023). Pengenalan Data Mining. Yayasan Kita Menulis.

Ningrum, A. V. F. F., Anshori, M., & Pradini, R. S. (2025). Klasterisasi Peserta KB Aktif di Desa Kalirejo Lawang Menggunakan Metode K-Means. Jurnal Indonesia: Manajemen Informatika dan Komunikasi, 6(1), 729–741. https://doi.org/10.35870/jimik.v6i1.1273

Pangestu, M. S., & Fitriani, M. A. (2022). Perbandingan Perhitungan Jarak Euclidean Distance, Manhattan Distance, dan Cosine Similarity dalam Pengelompokan Data Bibit Padi Menggunakan Algoritma K-Means. Sainteks, 19(2), 141–155. https://doi.org/10.30595/sainteks.v19i2.14495

Pratistha, R. N., & Kristianto, B. (2024). Implementasi Algoritma K-Means dalam Klasterisasi Kasus Stunting pada Balita di Desa Randudongkal. Jurnal Indonesia: Manajemen Informatika dan Komunikasi, 5(2), 1193–1205. https://doi.org/10.35870/jimik.v5i2.634

Rawal, K., Parthvi, A., Choubey, D. K., & Shukla, V. (2021). Prediction of Leukemia by Classification and Clustering Techniques. In P. Kumar, Y. Kumar, & M. A. Tawhid (Eds.), Machine Learning, Big Data, and IoT for Medical Informatics (pp. 275–295). Elsevier. https://doi.org/10.1016/B978-0-12-821777-1.00003-3

Shahapure, K. R., & Nicholas, C. (2020). Cluster Quality Analysis Using Silhouette Score. 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), 747–748. https://doi.org/10.1109/DSAA49011.2020.00096

Shapcott, Z. (2024). An Investigation into Distance Measures in Cluster Analysis. http://arxiv.org/abs/2404.13664

Solikhun, S., Siregar, M. R., Pujiastuti, L., Wahyudi, M., & Kurniawan, D. (2025). Comparison of Manhattan and Chebyshev Distance Metrics in Quantum-Based K-Medoids Clustering. SISTEMASI, 14(4), 1562–1572. https://doi.org/10.32520/stmsi.v14i4.5193

Sumarsih, S. (2023). Hubungan Karakteristik Ibu Nifas Terhadap Pemilihan Metode Kontrasepsi Pascasalin di Puskesmas Selopampang Kabupaten Temanggung. Sinar: Jurnal Kebidanan, 5(1), 1–14. https://doi.org/10.30651/sinar.v5i1.17321

Telsiz Kayaoğlu, G. İ., & Eroğlu, M. (2024). Farklı Uzaklık Fonksiyonlarının Spektral Kümeleme Algoritmasının Performansına Etkisi. Deu Muhendislik Fakultesi Fen ve Muhendislik, 26(77), 237–241. https://doi.org/10.21205/deufmd.2024267706

Tiffani, W. F., Rifai, M., Studi, P., Pemerintahan, I., Karawang, U. S., Daya, S., & Berencana, K. (2020). Implementasi Program Keluarga Berencana (KB) Dalam Upaya Menekan Pertumbuhan Penduduk di Kelurahan Sumur Batu Kecamatan Bantar Gebang Kota Bekasi. Jurnal Imiah Ilmu Administrasi, 7(3), 525–540. https://doi.org/10.25157/dinamika.v7i3.4348

Wala, J., Herman, H., & Umar, R. (2024). Implementasi K-Means Clustering pada Pengelompokan Pasien Penyakit Jantung. JISKA (Jurnal Informatika Sunan Kalijaga), 9(3), 205–216. https://doi.org/10.14421/jiska.2024.9.3.205-216

Wurdianarto, R. S., Novianto, S., & Rosyidah, U. (2014). Perbandingan Euclidean Distance dengan Canberra Distance pada Face Recognition. Techno.COM, 13(1), 31–37. https://doi.org/10.33633/tc.v13i1.539

Downloads

Published

2026-01-25

How to Cite

Komparasi Distance Measure pada K-Means dalam Klasterisasi Peserta KB Aktif. (2026). JISKA (Jurnal Informatika Sunan Kalijaga), 11(1), 32-43. https://doi.org/10.14421/jiska.5006

Similar Articles

1-10 of 38

You may also start an advanced similarity search for this article.