Komparasi Distance Measure pada K-Means dalam Klasterisasi Peserta KB Aktif
DOI:
https://doi.org/10.14421/jiska.5006Keywords:
K-Means, Clustering, Silhouette Coefficient, Distance Measure, ManhattanAbstract
The rapid population growth in Indonesia poses significant challenges to public welfare, economic stability, and sustainable development. The Family Planning program aims to regulate population growth through various contraceptive methods; however, participation rates often differ across regions. Understanding these variations is crucial for designing targeted interventions. This study investigates how different distance measures in the K-Means clustering algorithm affect the segmentation quality of KB participants in Kalirejo Village, Lawang District. Eight distance metrics—Euclidean, Manhattan, Minkowski, Chebyshev, Mahalanobis, Bray-Curtis, Canberra, and Cosine—were compared using standardized data from the local BKKBN office (January–September). Cluster validity was evaluated using the Silhouette Coefficient across k=2–10. Results show that the Manhattan distance with k=2 achieved the best clustering quality (SC = 0.7191), effectively distinguishing participant groups by contraceptive method preference. The study highlights the importance of selecting suitable distance measures to improve data-driven policy and decision-making in family planning management.
References
Andriyani, W., Anshori, M., Normawati, D., Pradini, R. S., Zaenudin, M., Harisuddin, M. I., Haris, M. S., Astuty Sitinjak A. A., & Kusuma, W. T. (2024). Matematika pada Kecerdasan Buatan. Tohar Media.
Argiento, R., Filippi-Mazzola, E., & Paci, L. (2025). Model-Based Clustering of Categorical Data Based on the Hamming Distance. Journal of the American Statistical Association, 120(550), 1178–1188. https://doi.org/10.1080/01621459.2024.2402568
Ghosh, A. (2022). Prediction of Diabetes Using Random Forest and XGBoost Classifiers. International Journal of Computer Science Engineering and Information Technology Research (IJCSEITR), 12(1), 19–28.
Hutagalung, J. (2022). Pemetaan Siswa Kelas Unggulan Menggunakan Algoritma K-Means Clustering. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 9(1), 606–620. https://doi.org/10.35957/jatisi.v9i1.1516
Hutagalung, J., & Sonata, F. (2021). Penerapan Metode K-Means untuk Menganalisis Minat Nasabah. Jurnal Media Informatika Budidarma, 5(3), 1187–1194. https://doi.org/10.30865/mib.v5i3.3113
Idrus, A., Tarihoran, N., Supriatna, U., Tohir, A., Suwarni, S., & Rahim, R. (2022). Distance Analysis Measuring for Clustering Using K-Means and Davies Bouldin Index Algorithm. TEM Journal, 11(4), 1871–1876. https://doi.org/10.18421/TEM114-55
Jollyta, D., Prihandoko, P., Priyanto, D., Hajjah, A., & Nora Marlim, Y. (2023). Comparison of Distance Measurements Based on k-Numbers and Its Influence to Clustering. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 23(1), 93–102. https://doi.org/10.30812/matrik.v23i1.3078
Kumala, A. A. S. P. A., & Rahning Putri, L. A. A. (2023). Measure Comparison Distance on K-Means Clustering for Grouping Music on Mood. JELIKU (Jurnal Elektronik Ilmu Komputer Udayana), 11(4), 663–674. https://doi.org/10.24843/JLK.2023.v11.i04.p03
Lino, M., Jedo, A., & Adam, C. V. (2021). Identifikasi Faktor-Faktor yang Mempengaruhi Pengambilan Keputusan Pasangan Usia Subur Dalam Mengikuti Program KB (Studi Kasus di Desa Leraboleng Kecamatan Titehena Kabupaten Flores Timur). Jurnal Administrasi dan Demokrasi, 1(2), 101–123. https://doi.org/10.35508/jad.v1i2.5599
Maharani, S., & Yotenka, R. (2024). Pengelompokan Kecamatan di Daerah Istimewa Yogyakarta Berdasarkan Jumlah Pengguna Alat Kontrasepsi Tahun 2022 dengan K-Medoids Cluster. Emerging Statistics and Data Science Journal, 2(2), 222–237. https://doi.org/10.20885/esds.vol2.iss.2.art16
Maulana, P. F. (2020). Upaya Dinas Kesehatan dan Keluarga Berencana dalam Pelaksanaan Kebijakan Keluarga Berencana di Kelurahan Bontang Lestari Kota Bontang. EJournal Ilmu Pemerintahan, 8(3), 741–754. https://ejournal.ip.fisip-unmul.ac.id/site/wp-content/uploads/2021/01/Pungki
Munawar, F., Utami, A. S. D., & Manurung, S. B. T. (2024). Klasterisasi Daerah Peserta KB Aktif di Kabupaten Asahan Menggunakan Metode K-Means. J-Com (Journal of Computer), 4(1), 58–67. https://doi.org/10.33330/j-com.v4i1.3047
Muttaqin, J. A., Harlina, S., S, W., Hakim, L., Anshori, M., Ambarwari, A., Kaunang, F. J., Sandag, G. A., Harizahayu, M. G. F., Ruslau, M. F. V, Prasetio, A., Nasir, K. R., & SIregar, M. N. H. (2023). Data Science dan Pembelajaran Mesin. Yayasan Kita Menulis.
Muttaqin, W. W. W., Munsarif, M., Mandias, G. F., Pungus, S. R., Widarman, A., Hapsari, W. K., Hardiyanti, S. A., Fatkhudin, A., Pasnur, B. E. F., Anshori, M. S., & Saputra, N. (2023). Pengenalan Data Mining. Yayasan Kita Menulis.
Ningrum, A. V. F. F., Anshori, M., & Pradini, R. S. (2025). Klasterisasi Peserta KB Aktif di Desa Kalirejo Lawang Menggunakan Metode K-Means. Jurnal Indonesia: Manajemen Informatika dan Komunikasi, 6(1), 729–741. https://doi.org/10.35870/jimik.v6i1.1273
Pangestu, M. S., & Fitriani, M. A. (2022). Perbandingan Perhitungan Jarak Euclidean Distance, Manhattan Distance, dan Cosine Similarity dalam Pengelompokan Data Bibit Padi Menggunakan Algoritma K-Means. Sainteks, 19(2), 141–155. https://doi.org/10.30595/sainteks.v19i2.14495
Pratistha, R. N., & Kristianto, B. (2024). Implementasi Algoritma K-Means dalam Klasterisasi Kasus Stunting pada Balita di Desa Randudongkal. Jurnal Indonesia: Manajemen Informatika dan Komunikasi, 5(2), 1193–1205. https://doi.org/10.35870/jimik.v5i2.634
Rawal, K., Parthvi, A., Choubey, D. K., & Shukla, V. (2021). Prediction of Leukemia by Classification and Clustering Techniques. In P. Kumar, Y. Kumar, & M. A. Tawhid (Eds.), Machine Learning, Big Data, and IoT for Medical Informatics (pp. 275–295). Elsevier. https://doi.org/10.1016/B978-0-12-821777-1.00003-3
Shahapure, K. R., & Nicholas, C. (2020). Cluster Quality Analysis Using Silhouette Score. 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), 747–748. https://doi.org/10.1109/DSAA49011.2020.00096
Shapcott, Z. (2024). An Investigation into Distance Measures in Cluster Analysis. http://arxiv.org/abs/2404.13664
Solikhun, S., Siregar, M. R., Pujiastuti, L., Wahyudi, M., & Kurniawan, D. (2025). Comparison of Manhattan and Chebyshev Distance Metrics in Quantum-Based K-Medoids Clustering. SISTEMASI, 14(4), 1562–1572. https://doi.org/10.32520/stmsi.v14i4.5193
Sumarsih, S. (2023). Hubungan Karakteristik Ibu Nifas Terhadap Pemilihan Metode Kontrasepsi Pascasalin di Puskesmas Selopampang Kabupaten Temanggung. Sinar: Jurnal Kebidanan, 5(1), 1–14. https://doi.org/10.30651/sinar.v5i1.17321
Telsiz Kayaoğlu, G. İ., & Eroğlu, M. (2024). Farklı Uzaklık Fonksiyonlarının Spektral Kümeleme Algoritmasının Performansına Etkisi. Deu Muhendislik Fakultesi Fen ve Muhendislik, 26(77), 237–241. https://doi.org/10.21205/deufmd.2024267706
Tiffani, W. F., Rifai, M., Studi, P., Pemerintahan, I., Karawang, U. S., Daya, S., & Berencana, K. (2020). Implementasi Program Keluarga Berencana (KB) Dalam Upaya Menekan Pertumbuhan Penduduk di Kelurahan Sumur Batu Kecamatan Bantar Gebang Kota Bekasi. Jurnal Imiah Ilmu Administrasi, 7(3), 525–540. https://doi.org/10.25157/dinamika.v7i3.4348
Wala, J., Herman, H., & Umar, R. (2024). Implementasi K-Means Clustering pada Pengelompokan Pasien Penyakit Jantung. JISKA (Jurnal Informatika Sunan Kalijaga), 9(3), 205–216. https://doi.org/10.14421/jiska.2024.9.3.205-216
Wurdianarto, R. S., Novianto, S., & Rosyidah, U. (2014). Perbandingan Euclidean Distance dengan Canberra Distance pada Face Recognition. Techno.COM, 13(1), 31–37. https://doi.org/10.33633/tc.v13i1.539
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Mochammad Anshori, Afifah Vera Ferencia Fitria Ningrum, Risqy Siwi Pradini

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.




