Algoritma K-Means dan Analisis Komponen Utama untuk Mengatasi Multikolinearitas pada Pengelompokan Kabupaten Tertinggal
DOI:
https://doi.org/10.14421/jiska.2025.10.3.294-306Keywords:
K-Means Algorithm, Principal Component Analysis, Multicollinearity, MANOVA, Underdeveloped RegenciesAbstract
Underdeveloped areas are regions that frequently face developmental challenges in various aspects such as infrastructure, education, and healthcare. Presidential Regulation Number 63 of 2020 designates 62 regencies in Indonesia as underdeveloped areas. This study categorizes the 62 underdeveloped regencies based on education and health indicators. The methods used are the k-means algorithm and principal component analysis due to multicollinearity in the data. MANOVA is conducted to determine the influence of the cluster results on the Human Development Index (HDI), Average Years of Schooling (AYS), Expected Years of Schooling (EYS), and Life Expectancy (LE). Due to multicollinearity in the education indicator data, principal component analysis was performed, resulting in three main components. The k-means analysis groups the 62 regencies into three clusters based on education indicators and two clusters based on health indicators. Further analysis using MANOVA shows the influence of the education and health clusters on HDI, AYS, EYS, and LE, indicated by statistical test results showing p-value < a(0.05). Thus, education and health indicators influence the categorization of underdeveloped areas.
References
Amelia, D., & Kholijah, G. (2023). Analisis Cluster Pengelompokan Provinsi di Indonesia Berdasarkan Sub Sektor Nilai Tukar Petani. DEMOS: Journal of Demography, Ethnography and Social Transformation, 3(1), 1–12. https://doi.org/10.30631/demos.v3i1.1812
Amrullah, A., Purnamasari, I., Sari, B. N., Garno, G., & Voutama, A. (2022). Analisis Cluster Faktor Penunjang Pendidikan Menggunakan Algoritma K-Means (Studi Kasus: Kabupaten Karawang). Jurnal Informatika dan Rekayasa Elektronik, 5(2), 244–252. https://doi.org/10.36595/jire.v5i2.701
Aryanto, R. P., Nilogiri, A., & Wardoyo, A. E. (2024). Klasterisasi Jumlah Penduduk Provinsi Jawa Timur Tahun 2021-2023 Menggunakan Algoritma K-Means. JISKA (Jurnal Informatika Sunan Kalijaga), 9(2), 134–146. https://doi.org/10.14421/jiska.2024.9.2.134-146
Fajar, M. A., & Indrawati, L. (2020). Pengaruh Belanja Pendidikan, Belanja Kesehatan dan Belanja Perumahan dan Fasilitas Umum Terhadap Indeks Pembangunan Manusia (Studi Kasus pada Pemerintah Daerah Kabupaten Cianjur). Indonesian Accounting Research Journal, 1(1), 108–118. https://jurnal.polban.ac.id/iarj/article/view/2366
Faujia, R. A., & Subarkah, M. Z. (2022). Analisis Klaster K-Means dan Visualisasi Data Spasial Berdasarkan Karakteristik Persebaran Covid-19 dan Pelanggaran Protokol Kesehatan di Jawa Tengah. Seminar Nasional Official Statistics, 2022(1), 813–822. https://doi.org/10.34123/semnasoffstat.v2022i1.1222
Hamidah, N., Santoso, R., & Rusgiyono, A. (2022). Klasterisasi Provinsi di Indonesia Berdasarkan Faktor Penyebaran Covid-19 Menggunakan Model-Based Clustering t-Multivariat. Jurnal Gaussian, 11(1), 56–66. https://doi.org/10.14710/j.gauss.v11i1.33999
Hasibuan, S. R., Harahap, I., & Tambunan, K. (2023). Pengaruh Pertumbuhan Ekonomi, Pendidikan dan Kesehatan Terhadap Indeks Pembangunan Manusia di Provinsi Sumatera Utara. Jurnal Manajemen Akuntansi (JUMSI), 3(1), 272–285. https://doi.org/10.36987/jumsi.v3i1.4023
Lashiyanti, A. R., Munthe, I. R., & Nasution, F. A. (2023). Optimisasi Klasterisasi Nilai Ujian Nasional dengan Pendekatan Algoritma. Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), 6(1), 14–20. https://ejournal.sisfokomtek.org/index.php/jikom/article/view/1550
Lenama, N., Kleden, M. A., & Pasangka, I. G. (2023). K-Means Clustering Analysis pada Pengelompokan Kabupaten/Kota di Provinsi Nusa Tenggara Timur Berdasarkan Indikator Pendidikan. Jurnal Cakrawala Ilmiah, 2(9), 3365–3376. https://doi.org/10.53625/jcijurnalcakrawalailmiah.v2i9.5653
Mariana, M. (2013). Analisis Komponen Utama. Jurnal Matematika dan Pembelajarannya, 1(2), 99–114. https://doi.org/10.33477/mp.v1i2.304
Nahdliyah, M. A., Widiharih, T., & Prahutama, A. (2019). Metode K-Medoids Clustering dengan Validasi Silhouette Index dan C-Index (Studi Kasus Jumlah Kriminalitas Kabupaten/Kota di Jawa Tengah Tahun 2018). Jurnal Gaussian, 8(2), 161–170. https://doi.org/10.14710/j.gauss.8.2.161-170
Octaviyani, N. R., Mayasari, R., & Susilawati, S. (2022). Implementasi Algoritma K-Means Clustering Status Gizi Balita. Jurnal Ilmiah Wahana Pendidikan, 2022(13), 370–381. https://doi.org/10.5281/zenodo.6962588
Peraturan Presiden (Perpres) Nomor 63 Tahun 2020 Tentang Penetapan Daerah Tertinggal Tahun 2020-2024, Pub. L. No. 63, Pemerintah Pusat Indonesia (2020).
Prasetyawati, M. D. (2023). Statistik Daerah Provinsi Jawa Tengah 2023 (D. Nursetyohadi & M. Samuharwadi, Eds.). Badan Pusat Statistik Provinsi Jawa Tengah.
Pursitasari, I. D., Harianto, B., Wulan, S. S., Hermanto, D., & Ardianto, D. (2024). Multivariat Analysis of Variance (MANOVA) di Bidang Kesehatan dan Pendidikan MIPA. Jurnal Ilmiah Kanderang Tingang, 15(1), 117–126. https://doi.org/10.37304/jikt.v15i1.307
Setiawan, I. N., Kristiani, S. N., Nurarifin, N., Delyana, S., Setyawati, N., & Arsyi, F. A. (2022). Indeks Pembangunan Manusia 2022 (W. Winardi, Y. Karyono, M. Mutijo, & D. H. Santoso, Eds.). Badan Pusat Statistik.
Sitinjak, D. K., Pangestu, B. A., & Sari, B. N. (2022). Clustering Tenaga Kesehatan Berdasarkan Kecamatan di Kabupaten Karawang Menggunakan Algoritma K-Means. Journal of Applied Informatics and Computing, 6(1), 47–54. https://doi.org/10.30871/jaic.v6i1.3855
Sutrisno, S., & Wulandari, D. (2018). Multivariate Analysis of Variance (MANOVA) untuk Memperkaya Hasil Penelitian Pendidikan. AKSIOMA: Jurnal Matematika dan Pendidikan Matematika, 9(1), 37. https://doi.org/10.26877/aks.v9i1.2472
Thamrin, D. R., & Murni, D. (2022). Analisis Cluster Hierarki Metode Single Linkage pada Kabupaten/Kota di Provinsi Sumatera Barat Berdasarkan Indikator Kesehatan. Journal of Mathematics UNP, 7(3), 45–51. https://doi.org/10.24036/unpjomath.v7i3.12988
Wijaya, T. A., Utami, E., & Fatta, H. (2024). Perbandingan Algoritma DBSCAN dan K-Means Clustering untuk Pengelompokan Data Gangguan PT. PLN UID Kalselteng. Innovative: Journal of Social Science Research, 4(1), 8846–8854. https://doi.org/10.31004/innovative.v4i1.8920
Yuan, C., & Yang, H. (2019). Research on K-Value Selection Method of K-Means Clustering Algorithm. J—Multidisciplinary Scientific Journal, 2(2), 226–235. https://doi.org/10.3390/j2020016
Yudhistira, A., & Andika, R. (2023). Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering. Journal of Artificial Intelligence and Technology Information (JAITI), 1(1), 20–28. https://doi.org/10.58602/jaiti.v1i1.22
Zulyani, A. A., Irawan, A. S. Y., & Jamaludin, A. (2023). Penerapan Data Mining Menggunakan Algoritma K-Means untuk Menentukan Tingkat Vaksinasi pada Kecamatan Tambun Selatan. Innovative: Journal of Social Science Research, 3(3), 7037–7050. https://j-innovative.org/index.php/Innovative/article/view/2946
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Firna Aviliana, Putriaji Hendikawati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.




