Model Prediksi Risiko Kanker Serviks dengan Pendekatan Support Vector Machine
DOI:
https://doi.org/10.14421/jiska.5445Keywords:
Cervical Cancer, Prediction, Support Vector Machine, SMOTE, PCAAbstract
Cervical cancer is one of the leading causes of death in women, especially in developing countries due to delays in early diagnosis. Developing a risk prediction model based on the Support Vector Machine (SVM) algorithm is one way to support a more accurate and efficient early detection process. The research object is medical records of female patients obtained from hospitals in Medan City, with a total of 164 patient data. The development process was carried out through the CRISP-DM stages, which include data cleaning, feature transformation, class balancing with SMOTE, and dimensionality reduction using PCA. The evaluation results showed that the best model was obtained with a PCA configuration with 9 principal components (90% variance) and a test size of 80:20, resulting in an accuracy of 88%, a precision of 88%, a recall of 84%, and an F1-score of 86%. Cross-validation evaluation with 5 folds provided the best average performance and the smallest standard deviation, indicating model stability. The final model was implemented in a web-based system to facilitate digital early detection. This study shows that SVM with the SMOTE and PCA approaches is effective in predicting cervical cancer risk accurately and efficiently.
References
Admojo, F. T., & Ahsanawati. (2020). Klasifikasi Aroma Alkohol Menggunakan Metode KNN. Indonesian Journal of Data and Science, 1(2), 34–38. https://doi.org/10.33096/ijodas.v1i2.12
Alsmariy, R., Healy, G., & Abdelhafez, H. (2020). Predicting Cervical Cancer Using Machine Learning Methods. International Journal of Advanced Computer Science and Applications, 11(7), 173–184. https://doi.org/10.14569/IJACSA.2020.0110723
Binanto, I., B, J. P. K., & Leokadja, L. (2024). Perbandingan Metode Klasifikasi Random Forest dan Support Vector Machine Terhadap Dataset Resiko Kanker Serviks. JTRISTE, 11(1), 60–66. https://doi.org/10.55645/jtriste.v11i1.507
Cahyaningtyas, C., Manongga, D., & Sembiring, I. (2022). Algorithm Comparison and Feature Selection for Classification of Broiler Chicken Harvest. Jurnal Teknik Informatika (Jutif), 3(6), 1717–1727. https://doi.org/10.20884/1.jutif.2022.3.6.493
Dzulhijjah, D. A., Herlambang, M. B., & Haifan, M. (2024). Implementasi Framework CRISP-DM untuk Proses Data Mining Aplikasi Credit Scoring PT. XYZ. Seminar Nasional Sains dan Teknologi “SainTek” Seri I, 1(1), 238–251. https://conference.ut.ac.id/index.php/saintek/article/view/2337
Ekawati, F. M., Listiani, P., Idaiani, S., Thobari, J. A., & Hafidz, F. (2024). Cervical Cancer Screening Program in Indonesia: Is It Time for HPV-DNA Tests? Results of a Qualitative Study Exploring the Stakeholders’ Perspectives. BMC Women’s Health, 24(1), Article ID: 125. https://doi.org/10.1186/s12905-024-02946-y
Fatmawati, A., Latifah, U. B., S, A. S., & Zuhriya, T. K. (2025). Klasifikasi Emosi Teks Pengguna Twitter Menggunakan Metode SVM. SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), 9, 1999–2007. https://doi.org/10.29407/hq9jyy12
Hasanah, M. A., Soim, S., & Handayani, A. S. (2021). Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. Journal of Applied Informatics and Computing, 5(2), 103–108. https://doi.org/10.30871/jaic.v5i2.3200
Indarti, J. (2023). The Role of Social Obstetrics and Gynecology in the Coverage of Cervical Cancer Screening in the Era of Health Transformation in Indonesia. Indonesian Journal of Obstetrics and Gynecology, 198–200. https://doi.org/10.32771/inajog.v11i4.2181
Jalil, A., Homaidi, A., & Fatah, Z. (2024). Implementasi Algoritma Support Vector Machine untuk Klasifikasi Status Stunting pada Balita. G-Tech: Jurnal Teknologi Terapan, 8(3), 2070–2079. https://doi.org/10.33379/gtech.v8i3.4811
Mulla, G. A. A., Demir, Y., & Hassan, M. (2021). Combination of PCA with SMOTE Oversampling for Classification of High-Dimensional Imbalanced Data. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(3), 858–869. https://doi.org/10.17798/bitlisfen.939733
Oktafiani, R., & Itje Sela, E. (2024). Breast Cancer Classification with Principal Component Analysis and SMOTE Using Random Forest Method and Support Vector Machine. Article in International Journal of Computer Applications, 186(16), 1–8. https://doi.org/10.5120/ijca2024923537
Parman, N. H., Hassan, R., & Zakaria, N. H. (2024). Breast Cancer Prediction Using Support Vector Machine Ensemble with PCA Feature Selection Method. International Journal of Innovative Computing, 14(1), 15–19. https://doi.org/10.11113/ijic.v14n1.461
Pinto, A., Ferreira, D., Neto, C., Abelha, A., & Machado, J. (2020). Data Mining to Predict Early Stage Chronic Kidney Disease. Procedia Computer Science, 177, 562–567. https://doi.org/10.1016/j.procs.2020.10.079
Prasetyo, S. D., Hilabi, S. S., & Nurapriani, F. (2023). Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN. Jurnal KomtekInfo, 10, 1–7. https://doi.org/10.35134/komtekinfo.v10i1.330
Schröer, C., Kruse, F., & Gómez, J. M. (2021). A Systematic Literature Review on Applying CRISP-DM Process Model. Procedia Computer Science, 181, 526–534. https://doi.org/10.1016/j.procs.2021.01.199
Singh, D., Vignat, J., Lorenzoni, V., Eslahi, M., Ginsburg, O., Lauby-Secretan, B., Arbyn, M., Basu, P., Bray, F., & Vaccarella, S. (2023). Global Estimates of Incidence and Mortality of Cervical Cancer in 2020: A Baseline Analysis of the WHO Global Cervical Cancer Elimination Initiative. The Lancet Global Health, 11(2), e197–e206. https://doi.org/10.1016/S2214-109X(22)00501-0
Studer, S., Bui, T. B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S., & Müller, K.-R. (2021). Towards CRISP-ML(Q): A Machine Learning Process Model with Quality Assurance Methodology. Machine Learning and Knowledge Extraction, 3(2), 392–413. https://doi.org/10.3390/make3020020
Sulistiyono, M., Pristyanto, Y., Adi, S., & Gumelar, G. (2021). Implementasi Algoritma Synthetic Minority Over-Sampling Technique untuk Menangani Ketidakseimbangan Kelas pada Dataset Klasifikasi. SISTEMASI, 10(2), 445–459. https://doi.org/10.32520/stmsi.v10i2.1303
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
Sylvia, P. H., Arifin, O., Arpan, A., Permata, R., Handoko, D., & Fitriyah. (2024). Evaluasi Kinerja Algoritma Naïve Bayes, KNN, dan SVM dalam Analisis Sentimen Media Sosial. Jusikom: Jurnal Sistem Komputer Musi Rawas, 9(2), 157–166.
Tangkelayuk, A., & Mailoa, E. (2022). Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 9(2), 1109–1119. https://doi.org/10.35957/jatisi.v9i2.2048
Triginandri, R., & Subhiyakto, E. R. (2024). Deteksi Dini Cacar Monyet menggunakan Convolutional Neural Network (CNN) dalam Aplikasi Mobile. Edumatic: Jurnal Pendidikan Informatika, 8(2), 516–525. https://doi.org/10.29408/edumatic.v8i2.27625
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Juwita Stefany Hutapea, Nisa Hanum Harani, Cahyo Prianto

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.




