Peramalan Nilai Saham BBCA Melalui Pendekatan Time Series Menggunakan Teknik Exponential Smoothing
DOI:
https://doi.org/10.14421/jiska.2025.10.3.259-266Keywords:
Stock Price Forecasting, Time Series, Exponential Smoothing, Bank Central Asia (BBCA), Financial Markets, Investment, RiskAbstract
Forecasting stock prices plays a crucial role in shaping investment strategies within the financial market. This article aims to predict the stock prices of Bank Central Asia (BBCA), a prominent entity in the Indonesian banking sector. Employing a time series methodology, this study utilizes the Exponential Smoothing technique to anticipate the fluctuations in BBCA's share prices. Meanwhile, the dataset used is the BBCA share price data from April 2001 to early January 2023. The final error rate in this forecast is 10%.
References
Al Ihsan, N. H. A. S., Dzakiyah, H. H., & Liantoni, F. (2020). Perbandingan Metode Single Exponential Smoothing dan Metode Holt untuk Prediksi Kasus COVID-19 di Indonesia. Ultimatics: Jurnal Teknik Informatika, 12(2), 89–94. https://doi.org/10.31937/ti.v12i2.1689
Arini, Suseno, H. B., Maulana, F. N., & Matin, I. M. M. (2023). Comparison of Single Exponential Smoothing and Holt-Winter Exponential Smoothing Methods in Sales Commercial Business. 2023 11th International Conference on Cyber and IT Service Management (CITSM), 1–6. https://doi.org/10.1109/CITSM60085.2023.10455673
Aziz, A. A., Mustaffa, Z., Ismail, S., Nor, N. A. M., & Fozi, N. Q. M. (2025). A Hybrid Simple Exponential Smoothing-Barnacles Mating Optimization Approach for Parameter Estimation: Enhancing COVID-19 Forecasting in Malaysia. MethodsX, 14, Article ID: 103347. https://doi.org/10.1016/j.mex.2025.103347
Baharaeen, S., & Masud, A. S. (1986). A Computer Program for Time Series Forecasting Using Single and Double Exponential Smoothing Techniques. Computers & Industrial Engineering, 11(1–4), 151–155. https://doi.org/10.1016/0360-8352(86)90068-9
Cetin, B., & Yavuz, I. (2021). Comparison of Forecast Accuracy of Ata and Exponential Smoothing. Journal of Applied Statistics, 48(13–15), 2580–2590. https://doi.org/10.1080/02664763.2020.1803813
Cunha, J. L. R. N., & Pereira, C. M. N. A. (2024). A Hybrid Model Based on STL with Simple Exponential Smoothing and ARMA for Wind Forecast in a Brazilian Nuclear Power Plant Site. Nuclear Engineering and Design, 421, Article ID: 113026. https://doi.org/10.1016/j.nucengdes.2024.113026
Furizalz, F., Ritonga, A., Ma’arif, A., & Suwarno, I. (2024). Stock Price Forecasting with Multivariate Time Series Long Short-Term Memory: A Deep Learning Approach. Journal of Robotics and Control (JRC), 5(5), 1322–1335. https://doi.org/10.18196/jrc.v5i5.22460
Gibran, C. M., Setiyawati, S., & Liantoni, F. (2021). Prediksi Penambahan Kasus Covid-19 di Indonesia Melalui Pendekatan Time Series Menggunakan Metode Exponential Smoothing. Jurnal Informatika Universitas Pamulang, 6(1), 112–117. https://doi.org/10.32493/informatika.v6i1.9442
Hubbi, M., & Mustofa, P. M. (2024). Stock Price Analysis Based on Time Range as a Basis for Determining the Optimal Forecasting Method. EKSAKTA: Journal of Sciences and Data Analysis, 5(2), 103–119. https://doi.org/10.20885/EKSAKTA.vol5.iss2.art1
Ibrahim, A. A., Saeed, B. N., & Fadil, M. A. (2023). Forecasting Stock Prices with an Integrated Approach Combining ARIMA and Machine Learning Techniques ARIMAML. Journal of Computer and Communications, 11(8), 58–70. https://doi.org/10.4236/jcc.2023.118005
Juniarti, S., Oebit, C. E. S., Yuliantini, T. Y., & Ayomi, P. (2024). Minat Investasi Saham Generasi Z: Financial Literacy dan Risk Tolerance. Oikonomia: Jurnal Manajemen, 20(2), 101–110. https://doi.org/10.47313/oikonomia.v20i2.2680
Kumar, L., Khedlekar, S., & Khedlekar, U. K. (2024). A Comparative Assessment of Holt Winter Exponential Smoothing and Autoregressive Integrated Moving Average for Inventory Optimization in Supply Chains. Supply Chain Analytics, 8, Article ID: 100084. https://doi.org/10.1016/j.sca.2024.100084
Landia, B. (2020). Peramalan Jumlah Mahasiswa Baru dengan Exponential Smoothing dan Moving Average. Jurnal Ilmiah Intech: Information Technology Journal of UMUS, 2(01), 71–78. https://doi.org/10.46772/intech.v2i01.188
Liantoni, F., & Agusti, A. (2020). Forecasting Bitcoin Using Double Exponential Smoothing Method Based on Mean Absolute Percentage Error. JOIV: International Journal on Informatics Visualization, 4(2), 91–95. https://doi.org/10.30630/joiv.4.2.335
Putra, D. P., Siregar, S. A., Fadillah, S. R., & Ningtyas, Z. K. (2024). Peramalan Penjualan Mobil dengan Menerapkan Metode Single Moving Average dan Single Exponential Smoothing. Jurnal Pariwisata Bisnis Digital dan Manajemen, 3(2), 81–86. https://doi.org/10.33480/jasdim.v3i2.5631
Sofiyati, N., Saputro, I. A., & Puspita, D. (2024). Prediksi Harga Saham Syariah dengan Triple Exponential Smoothing Multiplicative. Square: Journal of Mathematics and Mathematics Education, 6(2), 171–177. https://doi.org/10.21580/square.2024.6.2.23602
Svetunkov, I., Chen, H., & Boylan, J. E. (2023). A New Taxonomy for Vector Exponential Smoothing and Its Application to Seasonal Time Series. European Journal of Operational Research, 304(3), 964–980. https://doi.org/10.1016/j.ejor.2022.04.040
Svetunkov, I., Kourentzes, N., & Ord, J. K. (2022). Complex Exponential Smoothing. Naval Research Logistics (NRL), 69(8), 1108–1123. https://doi.org/10.1002/nav.22074
Tambunan, D. (2020). Investasi Saham di Masa Pandemi COVID-19. Widya Cipta: Jurnal Sekretari dan Manajemen, 4(2), 117–123. https://doi.org/10.31294/widyacipta.v4i2.8564
Tang, Y., Chau, K.-Y., Li, W., & Wan, T. (2020). Forecasting Economic Recession through Share Price in the Logistics Industry with Artificial Intelligence (AI). Computation, 8(3), Article ID: 70. https://doi.org/10.3390/computation8030070
Zahrunnisa, A., Nafalana, R. D., Rosyada, I. A., & Widodo, E. (2021). Perbandingan Metode Exponential Smoothing dan ARIMA pada Peramalan Garis Kemiskinan Provinsi Jawa Tengah. Jurnal Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, 2(3), 300–314. https://doi.org/10.46306/lb.v2i3.91
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Febri Liantoni, Ondihon Simanjuntak

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.




