Imputasi Data Temperatur Maksimum Menggunakan Metode Support Vector Regression

Authors

  • Isa Kholifatus Sukhna Universitas Internasional Semen Indonesia
  • Brina Miftahurrohmah Universitas Internasional Semen Indonesia
  • Catur Wulandari Universitas Internasional Semen Indonesia
  • Putri Amelia Universitas Internasional Semen Indonesia

DOI:

https://doi.org/10.14421/jiska.2025.10.2.171-185

Keywords:

Temperature, SVR, NTT, Reanalysis ERA-5, RBF

Abstract

Temperature is a crucial element affecting various aspects, from agriculture to natural disasters. Temperature data imputation is also important because, in some cases, temperature data is not always complete. This study aims to predict missing temperature data in the East Nusa Tenggara (NTT) region using the Support Vector Regression (SVR) method. The data used comes from six BMKG observation stations in NTT and ERA-5 Reanalysis data. The choice of the SVR method is based on its ability to handle data with complex structures. Modeling is conducted separately for each station using the Radial Basis Function (RBF) kernel. Model evaluation employs the metrics Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R²), presenting the evaluation results with low error. The results show that among several parameter tests, the parameter ranges [C = 1, 5, 10, 15], [ε = 0,1, 0,3, 0,6, 0,9], and [γ = 1, 5, 10, 15] in the SVR method are the best parameter ranges across all stations. The prediction graphs display different temperature fluctuation patterns at each station. This study contributes to enhancing the availability of accurate climate data, supporting sustainable decision-making in the NTT region.

References

Agwil, W., Agustina, D., Fransiska, H., & Hasani, I. A. (2024). Meningkatkan Kinerja Model Klasifikasi Curah Hujan Melalui Penanggulangan Missing Value dengan Imputasi Berbasis Model. INNOVATIVE: Journal of Social Science Research, 4(1), 11773–11783. https://doi.org/10.31004/innovative.v4i1.9158

Baek, J. W., & Chung, K. (2023). Multi-Context Mining-Based Graph Neural Network for Predicting Emerging Health Risks. IEEE Access, 11, 15153–15163. https://doi.org/10.1109/ACCESS.2023.3243722

BPK RI Perwakilan Provinsi Nusa Tenggara Timur. (2024). Pemerintah Provinsi NTT. BPK RI. https://ntt.bpk.go.id/pemerintah-provinsi-ntt/

Elsa, R. (2023). Penerapan Metode Support Vector Regression (SVR) Menggunakan Kernel Linear, Polinomial, dan Radial dengan Grid Search Optimization [Universitas Lampung]. https://digilib.unila.ac.id/74539/3/SKRIPSI%20TANPA%20BAB%20PEMBAHASAN.pdf

Gat, G., Hidayatullah, A., & Berliana, A. (2023). Workshop Pengenalan Dasar Pemrograman Python dengan Google Colaboratory. Prosiding ABDIMAS CORISINDO, 2023, 65–70. https://ojs.stmikpontianak.ac.id/index.php/pengabdian/article/view/74

Ginting, L. M., Sigiro, M. MT., Manurung, E. D., & Sinurat, J. J. P. (2021). Perbandingan Metode Algoritma Support Vector Regression dan Multiple Linear Regression untuk Memprediksi Stok Obat. Journal of Applied Technology and Informatics Indonesia, 1(2), 29–34. https://doi.org/10.54074/jati.v1i2.36

Harvian, K. A., & Yuhan, R. J. (2021). Kajian Perubahan Iklim Terhadap Ketahanan Pangan. Seminar Nasional Official Statistics, 1052–1061. https://doi.org/10.34123/semnasoffstat.v2020i1.593

Hodson, T. O. (2022). Root-Mean-Square Error (RMSE) or Mean Absolute Error (MAE): When to Use Them or Not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022

Jabir, S. R., Azis, H., Widyawati, D., & Tenripada, A. U. (2023). Prediksi Potensi Donatur Menggunakan Model Logistic Regression. Indonesian Journal of Data and Science, 4(1), 31–37. https://doi.org/10.56705/ijodas.v4i1.64

Laia, M. (2023). Analisis Kinerja Algoritma K-Nearest Neighbor Imputation (KNNI) untuk Missing Value pada Klasifikasi Data Mining. Journal of Informatics, Electrical and Electronics Engineering, 2(3), 92–98. https://doi.org/10.47065/jieee.v2i3.891

Malihah, L. (2022). Tantangan Dalam Upaya Mengatasi Dampak Perubahan Iklim dan Mendukung Pembangunan Ekonomi Berkelanjutan: Sebuah Tinjauan. Jurnal Kebijakan Pembangunan, 17(2), 219–232. https://doi.org/10.47441/jkp.v17i2.272

Natalia, F., & Firdaus, I. (2021, August 11). Kebakaran Lahan di NTT Capai 165 Titik Panas, Stasiun Meteorologi: Ada Praktik Pembakaran Ladang. Kompas.TV. https://www.kompas.tv/bisnis/200652/kebakaran-lahan-di-ntt-capai-165-titik-panas-stasiun-meteorologi-ada-praktik-pembakaran-ladang

Nurani, A. T., Setiawan, A., & Susanto, B. (2023). Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma. Jurnal Sains dan Edukasi Sains, 6(1), 34–43. https://doi.org/10.24246/juses.v6i1p34-43

Prasetya, M. R. A., Priyatno, A. M., & Nurhaeni. (2023). Penanganan Imputasi Missing Values pada Data Time Series dengan Menggunakan Metode Data Mining. Jurnal Informasi dan Teknologi, 5(2), 52–62. https://doi.org/10.37034/jidt.v5i2.324

Pratikno, A., & Rahardjo, M. (2021). Analisis Strategi Peningkatan Kinerja Perusahaan dengan Pendekatan SWOT-Balanced Scorecard pada PT IPSI Karya Abadi. Jurnal Manajemen Bisnis dan Kewirausahaan, 5(2), 184–189. https://doi.org/10.24912/jmbk.v5i2.11229

Rahmi, A., & Helma, H. (2023). Portofolio Optimal dengan Mempertimbangkan Prediksi Return Menggunakan Metode Support Vector Regression (SVR) Program Studi Matematika. Jurnal Pendidikan Tambusai, 7(3), 23745–23753. https://doi.org/10.31004/jptam.v7i3.10380

Ramedani, Z., Omid, M., Keyhani, A., Shamshirband, S., & Khoshnevisan, B. (2014). Potential of Radial Basis Function Based Support Vector Regression for Global Solar Radiation Prediction. Renewable and Sustainable Energy Reviews, 39, 1005–1011. https://doi.org/10.1016/j.rser.2014.07.108

Sefidian, A. M., & Daneshpour, N. (2019). Missing Value Imputation Using a Novel Grey Based Fuzzy C-Means, Mutual Information Based Feature Selection, and Regression Model. Expert Systems with Applications, 115, 68–94. https://doi.org/10.1016/j.eswa.2018.07.057

Septiansari, A. P. D., Zakaria, A., Khotimah, S. N., & Romdania, Y. (2021). Analisis Data Curah Hujan yang Hilang dengan Menggunakan Metode Normal Ratio, Inversed Square Distance, Rata-Rata Aljabar, dan Linear Regression (Studi Kasus Data Curah Hujan Beberapa Stasiun Hujan Wilayah Lampung Tengah). Jurnal Rekayasa Sipil dan Desain, 9(4), 853–862. https://doi.org/10.23960/jrsdd.v9i4.2219

Syahfitrri, N., Amalita, N., Vionanda, D., & Martha, Z. (2024). Forecasting Gold Prices in Indonesia Using Support Vector Regression with the Grid Search Algorithm. UNP Journal of Statistics and Data Science, 2(1), 32–39. https://doi.org/10.24036/ujsds/vol2-iss1/145

Downloads

Published

2025-05-31

How to Cite

Sukhna, I. K., Miftahurrohmah, B., Wulandari, C., & Amelia, P. (2025). Imputasi Data Temperatur Maksimum Menggunakan Metode Support Vector Regression. JISKA (Jurnal Informatika Sunan Kalijaga), 10(2), 171–185. https://doi.org/10.14421/jiska.2025.10.2.171-185

Issue

Section

Articles