Imputasi Data Temperatur Maksimum Menggunakan Metode Support Vector Regression
DOI:
https://doi.org/10.14421/jiska.2025.10.2.171-185Keywords:
Temperature, SVR, NTT, Reanalysis ERA-5, RBFAbstract
Temperature is a crucial element affecting various aspects, from agriculture to natural disasters. Temperature data imputation is also important because, in some cases, temperature data is not always complete. This study aims to predict missing temperature data in the East Nusa Tenggara (NTT) region using the Support Vector Regression (SVR) method. The data used comes from six BMKG observation stations in NTT and ERA-5 Reanalysis data. The choice of the SVR method is based on its ability to handle data with complex structures. Modeling is conducted separately for each station using the Radial Basis Function (RBF) kernel. Model evaluation employs the metrics Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R²), presenting the evaluation results with low error. The results show that among several parameter tests, the parameter ranges [C = 1, 5, 10, 15], [ε = 0,1, 0,3, 0,6, 0,9], and [γ = 1, 5, 10, 15] in the SVR method are the best parameter ranges across all stations. The prediction graphs display different temperature fluctuation patterns at each station. This study contributes to enhancing the availability of accurate climate data, supporting sustainable decision-making in the NTT region.
References
Agwil, W., Agustina, D., Fransiska, H., & Hasani, I. A. (2024). Meningkatkan Kinerja Model Klasifikasi Curah Hujan Melalui Penanggulangan Missing Value dengan Imputasi Berbasis Model. INNOVATIVE: Journal of Social Science Research, 4(1), 11773–11783. https://doi.org/10.31004/innovative.v4i1.9158
Baek, J. W., & Chung, K. (2023). Multi-Context Mining-Based Graph Neural Network for Predicting Emerging Health Risks. IEEE Access, 11, 15153–15163. https://doi.org/10.1109/ACCESS.2023.3243722
BPK RI Perwakilan Provinsi Nusa Tenggara Timur. (2024). Pemerintah Provinsi NTT. BPK RI. https://ntt.bpk.go.id/pemerintah-provinsi-ntt/
Elsa, R. (2023). Penerapan Metode Support Vector Regression (SVR) Menggunakan Kernel Linear, Polinomial, dan Radial dengan Grid Search Optimization [Universitas Lampung]. https://digilib.unila.ac.id/74539/3/SKRIPSI%20TANPA%20BAB%20PEMBAHASAN.pdf
Gat, G., Hidayatullah, A., & Berliana, A. (2023). Workshop Pengenalan Dasar Pemrograman Python dengan Google Colaboratory. Prosiding ABDIMAS CORISINDO, 2023, 65–70. https://ojs.stmikpontianak.ac.id/index.php/pengabdian/article/view/74
Ginting, L. M., Sigiro, M. MT., Manurung, E. D., & Sinurat, J. J. P. (2021). Perbandingan Metode Algoritma Support Vector Regression dan Multiple Linear Regression untuk Memprediksi Stok Obat. Journal of Applied Technology and Informatics Indonesia, 1(2), 29–34. https://doi.org/10.54074/jati.v1i2.36
Harvian, K. A., & Yuhan, R. J. (2021). Kajian Perubahan Iklim Terhadap Ketahanan Pangan. Seminar Nasional Official Statistics, 1052–1061. https://doi.org/10.34123/semnasoffstat.v2020i1.593
Hodson, T. O. (2022). Root-Mean-Square Error (RMSE) or Mean Absolute Error (MAE): When to Use Them or Not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022
Jabir, S. R., Azis, H., Widyawati, D., & Tenripada, A. U. (2023). Prediksi Potensi Donatur Menggunakan Model Logistic Regression. Indonesian Journal of Data and Science, 4(1), 31–37. https://doi.org/10.56705/ijodas.v4i1.64
Laia, M. (2023). Analisis Kinerja Algoritma K-Nearest Neighbor Imputation (KNNI) untuk Missing Value pada Klasifikasi Data Mining. Journal of Informatics, Electrical and Electronics Engineering, 2(3), 92–98. https://doi.org/10.47065/jieee.v2i3.891
Malihah, L. (2022). Tantangan Dalam Upaya Mengatasi Dampak Perubahan Iklim dan Mendukung Pembangunan Ekonomi Berkelanjutan: Sebuah Tinjauan. Jurnal Kebijakan Pembangunan, 17(2), 219–232. https://doi.org/10.47441/jkp.v17i2.272
Natalia, F., & Firdaus, I. (2021, August 11). Kebakaran Lahan di NTT Capai 165 Titik Panas, Stasiun Meteorologi: Ada Praktik Pembakaran Ladang. Kompas.TV. https://www.kompas.tv/bisnis/200652/kebakaran-lahan-di-ntt-capai-165-titik-panas-stasiun-meteorologi-ada-praktik-pembakaran-ladang
Nurani, A. T., Setiawan, A., & Susanto, B. (2023). Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma. Jurnal Sains dan Edukasi Sains, 6(1), 34–43. https://doi.org/10.24246/juses.v6i1p34-43
Prasetya, M. R. A., Priyatno, A. M., & Nurhaeni. (2023). Penanganan Imputasi Missing Values pada Data Time Series dengan Menggunakan Metode Data Mining. Jurnal Informasi dan Teknologi, 5(2), 52–62. https://doi.org/10.37034/jidt.v5i2.324
Pratikno, A., & Rahardjo, M. (2021). Analisis Strategi Peningkatan Kinerja Perusahaan dengan Pendekatan SWOT-Balanced Scorecard pada PT IPSI Karya Abadi. Jurnal Manajemen Bisnis dan Kewirausahaan, 5(2), 184–189. https://doi.org/10.24912/jmbk.v5i2.11229
Rahmi, A., & Helma, H. (2023). Portofolio Optimal dengan Mempertimbangkan Prediksi Return Menggunakan Metode Support Vector Regression (SVR) Program Studi Matematika. Jurnal Pendidikan Tambusai, 7(3), 23745–23753. https://doi.org/10.31004/jptam.v7i3.10380
Ramedani, Z., Omid, M., Keyhani, A., Shamshirband, S., & Khoshnevisan, B. (2014). Potential of Radial Basis Function Based Support Vector Regression for Global Solar Radiation Prediction. Renewable and Sustainable Energy Reviews, 39, 1005–1011. https://doi.org/10.1016/j.rser.2014.07.108
Sefidian, A. M., & Daneshpour, N. (2019). Missing Value Imputation Using a Novel Grey Based Fuzzy C-Means, Mutual Information Based Feature Selection, and Regression Model. Expert Systems with Applications, 115, 68–94. https://doi.org/10.1016/j.eswa.2018.07.057
Septiansari, A. P. D., Zakaria, A., Khotimah, S. N., & Romdania, Y. (2021). Analisis Data Curah Hujan yang Hilang dengan Menggunakan Metode Normal Ratio, Inversed Square Distance, Rata-Rata Aljabar, dan Linear Regression (Studi Kasus Data Curah Hujan Beberapa Stasiun Hujan Wilayah Lampung Tengah). Jurnal Rekayasa Sipil dan Desain, 9(4), 853–862. https://doi.org/10.23960/jrsdd.v9i4.2219
Syahfitrri, N., Amalita, N., Vionanda, D., & Martha, Z. (2024). Forecasting Gold Prices in Indonesia Using Support Vector Regression with the Grid Search Algorithm. UNP Journal of Statistics and Data Science, 2(1), 32–39. https://doi.org/10.24036/ujsds/vol2-iss1/145
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Isa Kholifatus Sukhna, Brina Miftahurrohmah, Catur Wulandari, Putri Amelia

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.




