Analisis Efektivitas Metode Filtering dan Intersection dalam Analisis Data Permukaan Bangunan dengan QGIS

Authors

  • Prana Wijaya Pratama Nandana UIN Maulana Malik Ibrahim Malang
  • Muhammad Faisal UIN Maulana Malik Ibrahim Malang

DOI:

https://doi.org/10.14421/jiska.2025.10.3.351-363

Keywords:

Filtering, Intersection, Kabupaten Blitar, Comparing, QGIS

Abstract

This study evaluates the efficiency of two methods for processing geospatial building surface data, namely Filtering and Intersection, using a case study in Blitar Regency. The data for this research was obtained by comparing two sources: OpenStreetMap (OSM), which has a data completeness rate of 60%, and Google Open Building, with a data completeness rate of 90%. From these two sources, the data with the highest completeness, which is from Google Open Building, was selected for further analysis. The data processing was carried out using QGIS software, chosen for its capability to support various geospatial analysis methods. The comparison of the two methods was based on three main criteria: processing time, resource efficiency, and scalability. The results showed that the Filtering method outperforms in all these aspects. Filtering can complete processing in an average of 1.6 seconds, significantly faster than the Intersection method, which requires an average of 7 minutes and 50 seconds. In terms of resource efficiency, Filtering is also more economical, with an average CPU usage of 18.85% and memory usage of 121.4 MB, compared to the Intersection method’s 34.05% CPU usage and 236.4 MB of memory. Additionally, the Filtering method demonstrated better scalability, capable of handling larger datasets with fewer resources and less time. Therefore, the Filtering method is recommended for geospatial data processing that prioritizes speed, efficiency, and the ability to handle large and complex datasets.

References

Afnarius, S., Syukur, M., Ekaputra, E. G., Parawita, Y., & Darman, R. (2020). Development of GIS for Buildings in the Customary Village of Minangkabau Koto Gadang, West Sumatra, Indonesia. ISPRS International Journal of Geo-Information, 9(6), Article ID: 365. https://doi.org/10.3390/ijgi9060365

Auradkar, P. K., Raykar, A., Agarwal, I., Sitaram, D., & R., M. (2022). Accuracy Assessment and Performance Analysis of Raster to Vector Conversions on LULC Data – India. Journal of Engineering, Design and Technology, 20(6), 1787–1809. https://doi.org/10.1108/JEDT-04-2021-0224

Bonny, T., & Soudan, B. (2015). Filtering Technique for High Speed Database Sequence Comparison. Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015), 73–76. https://doi.org/10.1109/ICOSC.2015.7050781

Brovelli, M. A., Wu, H., Minghini, M., Molinari, M. E., Kilsedar, C. E., Zheng, X., Shu, P., & Chen, J. (2018). Open Source Software and Open Educational Material on Land Cover Maps Intercomparison and Validation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–4, 61–68. https://doi.org/10.5194/isprs-archives-XLII-4-61-2018

Darmawan, S., Nurulhakim, N. N., & Hernawati, R. (2024). Kecerdasan Buatan Berbasis Geospasial (GeoAI) Menggunakan Google Earth Engine untuk Monitoring Fenomena Urban Heat Island di Indonesia. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 12(2), 303–320. https://doi.org/10.26760/elkomika.v12i2.303

Duarte, L., Queirós, C., & Teodoro, A. C. (2021). Comparative Analysis of QGIS Plugins for Web Maps Creation. La Granja, 34(2), 8–26. https://doi.org/10.17163/lgr.n34.2021.01

El-Ashmawy, Dr. K. L. A. (2019). Three-Dimensional Intersection Method for Monitoring and Analysis of Horizontal and Vertical Movements of Buildings. International Journal of Advances in Scientific Research and Engineering, 05(10), 162–170. https://doi.org/10.31695/IJASRE.2019.33553

El-Kareem, M. M. A., & El-Emary, I. M. M. (2019). Comparative Study Between the Algorithm Using Frequency Domain and the Algorithm Using Linear Programming. Indian Journal of Science and Technology, 12(18), 1–5. https://doi.org/10.17485/ijst/2019/v12i18/144589

F, S. N., & Saleh, S. R. (2023). Penggunaan Model SIG dalam Analisis Fisik Lingkungan di Kota Metro. Jurnal Perencanaan Wilayah dan Kota, 17(2), 42–54. https://doi.org/10.29313/jpwk.v17i2.346

Flenniken, J. M., Stuglik, S., & Iannone, B. V. (2020). Quantum GIS (QGIS): An Introduction to a Free Alternative to More Costly GIS Platforms. EDIS, 2020(2), Article ID: 7. https://doi.org/10.32473/edis-fr428-2020

Fram, C., Chistopoulou, K., & Ellul, C. (2015). Assessing the Quality of OpenStreetMap Building Data and Searching for a Proxy Variable to Estimate OSM Building Data Completeness. In N. Malleson, N. Addis, H. Durham, A. Heppenstall, R. Lovelace, P. Norman, & R. Oldroyd (Eds.), GIS Research UK 2015 (GISRUK2015) (pp. 195–205). GISRUK 2015 Proceedings. https://api.semanticscholar.org/CorpusID:196089344

Goodman, S., BenYishay, A., Lv, Z., & Runfola, D. (2019). GeoQuery: Integrating HPC Systems and Public Web-Based Geospatial Data Tools. Computers and Geosciences, 122, 103–112. https://doi.org/10.1016/j.cageo.2018.10.009

Ivanov, S. (2020). Spatial Data Models. Journal Scientific and Applied Research, 20(1), 40–46. https://doi.org/10.46687/jsar.v20i1.303

Khajedehi, M. H., Prataviera, E., Bordignon, S., & De Carli, M. (2024). Exploiting Geographic Open Data to Improve Urban Building Energy Simulations: The Padova City Center Case Study. E3S Web of Conferences, 523, Article ID: 05007. https://doi.org/10.1051/e3sconf/202452305007

Kukulska, A., Salata, T., Cegielska, K., & Szylar, M. (2018). Methodology of Evaluation and Correction of Geometric Data Topology in QGIS Software. Acta Scientiarum Polonorum. Formatio Circumiectus, 17(1), 125–138. https://doi.org/10.15576/ASP.FC/2018.17.1.125

Lochana M, Manvith P, & Anusha U A. (2024). A Literature Review of Exploratory Analysis of Geolocational Data. International Journal of Advanced Research in Science, Communication and Technology, 593–597. https://doi.org/10.48175/IJARSCT-15379

Memduhoglu, A., & Basaraner, M. (2022). An Approach for Multi-Scale Urban Building Data Integration and Enrichment Through Geometric Matching and Semantic Web. Cartography and Geographic Information Science, 49(1), 1–17. https://doi.org/10.1080/15230406.2021.1952108

Rajab, M., & Wang, D. (2020). Practical Challenges and Recommendations of Filter Methods for Feature Selection. Journal of Information & Knowledge Management, 19(01), Article ID: 2040019. https://doi.org/10.1142/S0219649220400195

Raju, P. L. N. (2004). Spatial Data Analysis. In M. V. K. Sivakumar, P. S. Roy, K. Harmsen, & S. K. Saha (Eds.), Proceedings of the Training Workshop (pp. 151–174). World Meteorological Organisation. https://api.semanticscholar.org/CorpusID:14763553

Singla, S., Eldawy, A., Diao, T., Mukhopadhyay, A., & Scudiero, E. (2021). Experimental Study of Big Raster and Vector Database Systems. 2021 IEEE 37th International Conference on Data Engineering (ICDE), 2243–2248. https://doi.org/10.1109/ICDE51399.2021.00231

Sutanto, A. I., & Aditya, T. P. (2021). Pendekatan Otomatisasi Evaluasi Kualitas Kelengkapan pada Informasi Geospasial. Jurnal Geosaintek, 7, 27–36. https://journal.its.ac.id/index.php/geosaintek/article/view/7387

Wahab, L., & Kurniawan, A. (2023). Pemanfaatan Sistem Informasi Geografis untuk Pemetaan Lahan Pertanian di Kecamatan Kembaran, Banyumas, Jawa Tengah. Jurnal Agroindustri Terapan Indonesia, 1(1), 1–10. https://doi.org/10.31962/jati.v1i1.119

Wegmann, M., Schwalb-Willmann, J., & Dech, S. (2020). An Introduction to Spatial Data Analysis. Pelagic Publishing. https://doi.org/10.53061/HCED6492

Wismarini, T. D., & Khristianto, T. (2016). Implementasi Superimpose dalam Pemodelan Spasial Tingkat Rentan Banjir di Semarang. Jurnal Teknologi Informasi DINAMIK, 21(2), 124–138. https://doi.org/10.35315/dinamik.v21i2.6092

Yogi, K. S., V, D. G., K M, M., Sujithra, L. R., Prasad, K., & Midhun, P. (2024). Scalability and Performance Evaluation of Machine Learning Techniques in High-Volume Social Media Data Analysis. 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 1–6. https://doi.org/10.1109/ICRITO61523.2024.10522361

Zhou, Q. (2018). Exploring the Relationship Between Density and Completeness of Urban Building Data in OpenStreetMap for Quality Estimation. International Journal of Geographical Information Science, 32(2), 257–281. https://doi.org/10.1080/13658816.2017.1395883

Downloads

Published

2025-09-30

How to Cite

Nandana, P. W. P., & Faisal, M. (2025). Analisis Efektivitas Metode Filtering dan Intersection dalam Analisis Data Permukaan Bangunan dengan QGIS. JISKA (Jurnal Informatika Sunan Kalijaga), 10(3), 351–363. https://doi.org/10.14421/jiska.2025.10.3.351-363