Analisis Efektivitas Metode Filtering dan Intersection dalam Analisis Data Permukaan Bangunan dengan QGIS
DOI:
https://doi.org/10.14421/jiska.2025.10.3.351-363Keywords:
Filtering, Intersection, Kabupaten Blitar, Comparing, QGISAbstract
This study evaluates the efficiency of two methods for processing geospatial building surface data, namely Filtering and Intersection, using a case study in Blitar Regency. The data for this research was obtained by comparing two sources: OpenStreetMap (OSM), which has a data completeness rate of 60%, and Google Open Building, with a data completeness rate of 90%. From these two sources, the data with the highest completeness, which is from Google Open Building, was selected for further analysis. The data processing was carried out using QGIS software, chosen for its capability to support various geospatial analysis methods. The comparison of the two methods was based on three main criteria: processing time, resource efficiency, and scalability. The results showed that the Filtering method outperforms in all these aspects. Filtering can complete processing in an average of 1.6 seconds, significantly faster than the Intersection method, which requires an average of 7 minutes and 50 seconds. In terms of resource efficiency, Filtering is also more economical, with an average CPU usage of 18.85% and memory usage of 121.4 MB, compared to the Intersection method’s 34.05% CPU usage and 236.4 MB of memory. Additionally, the Filtering method demonstrated better scalability, capable of handling larger datasets with fewer resources and less time. Therefore, the Filtering method is recommended for geospatial data processing that prioritizes speed, efficiency, and the ability to handle large and complex datasets.
References
Afnarius, S., Syukur, M., Ekaputra, E. G., Parawita, Y., & Darman, R. (2020). Development of GIS for Buildings in the Customary Village of Minangkabau Koto Gadang, West Sumatra, Indonesia. ISPRS International Journal of Geo-Information, 9(6), Article ID: 365. https://doi.org/10.3390/ijgi9060365
Auradkar, P. K., Raykar, A., Agarwal, I., Sitaram, D., & R., M. (2022). Accuracy Assessment and Performance Analysis of Raster to Vector Conversions on LULC Data – India. Journal of Engineering, Design and Technology, 20(6), 1787–1809. https://doi.org/10.1108/JEDT-04-2021-0224
Bonny, T., & Soudan, B. (2015). Filtering Technique for High Speed Database Sequence Comparison. Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015), 73–76. https://doi.org/10.1109/ICOSC.2015.7050781
Brovelli, M. A., Wu, H., Minghini, M., Molinari, M. E., Kilsedar, C. E., Zheng, X., Shu, P., & Chen, J. (2018). Open Source Software and Open Educational Material on Land Cover Maps Intercomparison and Validation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII–4, 61–68. https://doi.org/10.5194/isprs-archives-XLII-4-61-2018
Darmawan, S., Nurulhakim, N. N., & Hernawati, R. (2024). Kecerdasan Buatan Berbasis Geospasial (GeoAI) Menggunakan Google Earth Engine untuk Monitoring Fenomena Urban Heat Island di Indonesia. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 12(2), 303–320. https://doi.org/10.26760/elkomika.v12i2.303
Duarte, L., Queirós, C., & Teodoro, A. C. (2021). Comparative Analysis of QGIS Plugins for Web Maps Creation. La Granja, 34(2), 8–26. https://doi.org/10.17163/lgr.n34.2021.01
El-Ashmawy, Dr. K. L. A. (2019). Three-Dimensional Intersection Method for Monitoring and Analysis of Horizontal and Vertical Movements of Buildings. International Journal of Advances in Scientific Research and Engineering, 05(10), 162–170. https://doi.org/10.31695/IJASRE.2019.33553
El-Kareem, M. M. A., & El-Emary, I. M. M. (2019). Comparative Study Between the Algorithm Using Frequency Domain and the Algorithm Using Linear Programming. Indian Journal of Science and Technology, 12(18), 1–5. https://doi.org/10.17485/ijst/2019/v12i18/144589
F, S. N., & Saleh, S. R. (2023). Penggunaan Model SIG dalam Analisis Fisik Lingkungan di Kota Metro. Jurnal Perencanaan Wilayah dan Kota, 17(2), 42–54. https://doi.org/10.29313/jpwk.v17i2.346
Flenniken, J. M., Stuglik, S., & Iannone, B. V. (2020). Quantum GIS (QGIS): An Introduction to a Free Alternative to More Costly GIS Platforms. EDIS, 2020(2), Article ID: 7. https://doi.org/10.32473/edis-fr428-2020
Fram, C., Chistopoulou, K., & Ellul, C. (2015). Assessing the Quality of OpenStreetMap Building Data and Searching for a Proxy Variable to Estimate OSM Building Data Completeness. In N. Malleson, N. Addis, H. Durham, A. Heppenstall, R. Lovelace, P. Norman, & R. Oldroyd (Eds.), GIS Research UK 2015 (GISRUK2015) (pp. 195–205). GISRUK 2015 Proceedings. https://api.semanticscholar.org/CorpusID:196089344
Goodman, S., BenYishay, A., Lv, Z., & Runfola, D. (2019). GeoQuery: Integrating HPC Systems and Public Web-Based Geospatial Data Tools. Computers and Geosciences, 122, 103–112. https://doi.org/10.1016/j.cageo.2018.10.009
Ivanov, S. (2020). Spatial Data Models. Journal Scientific and Applied Research, 20(1), 40–46. https://doi.org/10.46687/jsar.v20i1.303
Khajedehi, M. H., Prataviera, E., Bordignon, S., & De Carli, M. (2024). Exploiting Geographic Open Data to Improve Urban Building Energy Simulations: The Padova City Center Case Study. E3S Web of Conferences, 523, Article ID: 05007. https://doi.org/10.1051/e3sconf/202452305007
Kukulska, A., Salata, T., Cegielska, K., & Szylar, M. (2018). Methodology of Evaluation and Correction of Geometric Data Topology in QGIS Software. Acta Scientiarum Polonorum. Formatio Circumiectus, 17(1), 125–138. https://doi.org/10.15576/ASP.FC/2018.17.1.125
Lochana M, Manvith P, & Anusha U A. (2024). A Literature Review of Exploratory Analysis of Geolocational Data. International Journal of Advanced Research in Science, Communication and Technology, 593–597. https://doi.org/10.48175/IJARSCT-15379
Memduhoglu, A., & Basaraner, M. (2022). An Approach for Multi-Scale Urban Building Data Integration and Enrichment Through Geometric Matching and Semantic Web. Cartography and Geographic Information Science, 49(1), 1–17. https://doi.org/10.1080/15230406.2021.1952108
Rajab, M., & Wang, D. (2020). Practical Challenges and Recommendations of Filter Methods for Feature Selection. Journal of Information & Knowledge Management, 19(01), Article ID: 2040019. https://doi.org/10.1142/S0219649220400195
Raju, P. L. N. (2004). Spatial Data Analysis. In M. V. K. Sivakumar, P. S. Roy, K. Harmsen, & S. K. Saha (Eds.), Proceedings of the Training Workshop (pp. 151–174). World Meteorological Organisation. https://api.semanticscholar.org/CorpusID:14763553
Singla, S., Eldawy, A., Diao, T., Mukhopadhyay, A., & Scudiero, E. (2021). Experimental Study of Big Raster and Vector Database Systems. 2021 IEEE 37th International Conference on Data Engineering (ICDE), 2243–2248. https://doi.org/10.1109/ICDE51399.2021.00231
Sutanto, A. I., & Aditya, T. P. (2021). Pendekatan Otomatisasi Evaluasi Kualitas Kelengkapan pada Informasi Geospasial. Jurnal Geosaintek, 7, 27–36. https://journal.its.ac.id/index.php/geosaintek/article/view/7387
Wahab, L., & Kurniawan, A. (2023). Pemanfaatan Sistem Informasi Geografis untuk Pemetaan Lahan Pertanian di Kecamatan Kembaran, Banyumas, Jawa Tengah. Jurnal Agroindustri Terapan Indonesia, 1(1), 1–10. https://doi.org/10.31962/jati.v1i1.119
Wegmann, M., Schwalb-Willmann, J., & Dech, S. (2020). An Introduction to Spatial Data Analysis. Pelagic Publishing. https://doi.org/10.53061/HCED6492
Wismarini, T. D., & Khristianto, T. (2016). Implementasi Superimpose dalam Pemodelan Spasial Tingkat Rentan Banjir di Semarang. Jurnal Teknologi Informasi DINAMIK, 21(2), 124–138. https://doi.org/10.35315/dinamik.v21i2.6092
Yogi, K. S., V, D. G., K M, M., Sujithra, L. R., Prasad, K., & Midhun, P. (2024). Scalability and Performance Evaluation of Machine Learning Techniques in High-Volume Social Media Data Analysis. 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 1–6. https://doi.org/10.1109/ICRITO61523.2024.10522361
Zhou, Q. (2018). Exploring the Relationship Between Density and Completeness of Urban Building Data in OpenStreetMap for Quality Estimation. International Journal of Geographical Information Science, 32(2), 257–281. https://doi.org/10.1080/13658816.2017.1395883
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Prana Wijaya Pratama Nandana, Muhammad Faisal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.




