Analisis Sistem Deteksi Citra untuk Optimalisasi Pengawasan Lalu Lintas Udara Menggunakan Algoritma YOLOv5
DOI:
https://doi.org/10.14421/jiska.2025.10.3.364-376Keywords:
Convolutional Neural Network, YOLOv5, Deep Learning, Aircraft Detection, Air Traffic SurveillanceAbstract
This study aims to develop an image detection system capable of identifying manned and unmanned aircraft objects to support air traffic surveillance. The increasing flight activity, both from commercial aircraft and drones, requires a more optimal surveillance system to connect the airspace efficiently. In this study, a Convolutional Neural Network (CNN) model utilizing the You Only Look Once version 5 (YOLOv5) method is employed to detect and classify objects in real-time from aircraft images. The methodology employed includes collecting aerial image data, labeling the data, and training object detection models using YOLOv5. The dataset used consists of 2,520 images of manned aircraft (warplanes) and 5,422 images of unmanned aircraft (drones). The experimental results demonstrate that the YOLOv5 model achieves high detection accuracy for both manned and unmanned aircraft, with a relatively fast inference time, thereby supporting the development of an effective air traffic surveillance system. This system is expected to be an integral part of a more sophisticated and responsive air traffic surveillance solution.
References
Adam, G. (2022). Aerospace Images. Kaggle. https://www.kaggle.com/datasets/gatewayadam/aerospace-images
Ahmed, M. W., Almujally, N. A., Alazeb, A., Algarni, A., & Park, J. (2024). Enhanced Object Detection and Classification via Multi-Method Fusion. Computers, Materials & Continua, 79(2), 3315–3331. https://doi.org/10.32604/cmc.2024.046501
Akbar, S. A., Ghazali, K. H., Hasan, H., Mohamed, Z., Aji, W. S., & Yudhana, A. (2022). Rapid Bacterial Colony Classification Using Deep Learning. Indonesian Journal of Electrical Engineering and Computer Science, 26(1), 352–361. https://doi.org/10.11591/ijeecs.v26.i1.pp352-361
Aksoy, M. Ç., Orak, A. S., Özkan, H. M., & Selimoğlu, B. (2019). Amateur Unmanned Air Vehicle Detection. Kaggle. https://doi.org/10.34740/kaggle/dsv/1019970
Anne, S., & Gueye, A. D. (2024). CNN and XGBoost for Automatic Segmentation of Stroke Lesions Using CT Data. Procedia Computer Science, 237, 72–79. https://doi.org/10.1016/j.procs.2024.05.081
Argho, A. G., Maswood, M. M. S., Mahmood, Md. I., & Mondol, N. (2024). EfficientCovNet: A CNN-Based Approach to Detect Various Pulmonary Diseases Including COVID-19 Using Modified EfficientNet. Intelligent Systems with Applications, 21, Article ID: 200315. https://doi.org/10.1016/j.iswa.2023.200315
Arnia, F., Saddami, K., Roslidar, R., Muharar, R., & Munadi, K. (2024). Towards Accurate Diabetic Foot Ulcer Image Classification: Leveraging CNN Pre-Trained Features and Extreme Learning Machine. Smart Health, 33, Article ID: 100502. https://doi.org/10.1016/j.smhl.2024.100502
Arooj, S., Altaf, S., Ahmad, S., Mahmoud, H., & Mohamed, A. S. N. (2024). Enhancing Sign Language Recognition Using CNN and SIFT: A Case Study on Pakistan Sign Language. Journal of King Saud University - Computer and Information Sciences, 36(2), Article ID: 101934. https://doi.org/10.1016/j.jksuci.2024.101934
Asadi, R., Queguineur, A., Wiikinkoski, O., Mokhtarian, H., Aihkisalo, T., Revuelta, A., & Ituarte, I. F. (2024). Process Monitoring by Deep Neural Networks in Directed Energy Deposition: CNN-Based Detection, Segmentation, and Statistical Analysis of Melt Pools. Robotics and Computer-Integrated Manufacturing, 87, Article ID: 102710. https://doi.org/10.1016/j.rcim.2023.102710
Aydin, B., & Singha, S. (2023). Drone Detection Using YOLOv5. Eng, 4(1), 416–433. https://doi.org/10.3390/eng4010025
Bilel, K. (2022). Military Aircraft Recognition Dataset. Kaggle. https://www.kaggle.com/datasets/khlaifiabilel/military-aircraft-recognition-dataset
Chowdhury, A. A., Hasan Mahmud, S. M., Shahjalal Hoque, K. K., Ahmed, K., Bui, F. M., Lio, P., Moni, M. A., & Al-Zahrani, F. A. (2023). StackFBAs: Detection of Fetal Brain Abnormalities Using CNN with Stacking Strategy from MRI Images. Journal of King Saud University - Computer and Information Sciences, 35(8), Article ID: 101647. https://doi.org/10.1016/j.jksuci.2023.101647
D L, S., K, V., N, A., & Vashistha, S. (2024). Tomato Leaf Disease Detection Using CNN. Procedia Computer Science, 235, 2975–2984. https://doi.org/10.1016/j.procs.2024.04.281
Das, K., & Baruah, A. K. (2023). Object Detection on Scene Images: A Novel Approach. Procedia Computer Science, 218, 153–163. https://doi.org/10.1016/j.procs.2022.12.411
Ellouze, A., Kadri, N., Alaerjan, A., & Ksantini, M. (2024). Combined CNN-LSTM Deep Learning Algorithms for Recognizing Human Physical Activities in Large and Distributed Manners: A Recommendation System. Computers, Materials & Continua, 79(1), 351–372. https://doi.org/10.32604/cmc.2024.048061
Fahmi, M., Yudhana, A., & Sunardi, S. (2023). Pemilahan Sampah Menggunakan Model Klasifikasi Support Vector Machine Gabungan dengan Convolutional Neural Network. JURIKOM (Jurnal Riset Komputer), 10(1), 76–81. https://mti.uad.ac.id/download/pemilahan-sampah-menggunakan-model-klasifikasi-support-vector-machine-gabungan-dengan-convolutional-neural-network/
Feng, C., Wang, C., Zhang, D., Kou, R., & Fu, Q. (2024). Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer. Computers, Materials & Continua, 78(3), 3993–4013. https://doi.org/10.32604/cmc.2024.048351
Fransisca, V., & Santoso, H. (2023). Penerapan Gamma Correction dalam Peningkatan Pendeteksian Objek Malam pada Algoritma YOLOv5. Building of Informatics, Technology and Science (BITS), 5(1), 59–69. https://doi.org/10.47065/bits.v5i1.3553
Freitas, N. R., Vieira, P. M., Tinoco, C., Anacleto, S., Oliveira, J. F., Vaz, A. I. F., Laguna, M. P., Lima, E., & Lima, C. S. (2024). Multiple Mask and Boundary Scoring R-CNN with cGAN Data Augmentation for Bladder Tumor Segmentation in WLC Videos. Artificial Intelligence in Medicine, 147, Article ID: 102723. https://doi.org/10.1016/j.artmed.2023.102723
Giménez-Gallego, J., Martinez-del-Rincon, J., González-Teruel, J. D., Navarro-Hellín, H., Navarro, P. J., & Torres-Sánchez, R. (2024). On-Tree Fruit Image Segmentation Comparing Mask R-CNN and Vision Transformer Models. Application in a Novel Algorithm for Pixel-Based Fruit Size Estimation. Computers and Electronics in Agriculture, 222, Article ID: 109077. https://doi.org/10.1016/j.compag.2024.109077
Goud, P. A. K., Raj, G. M., Rahul, K., & Lakshmi, A. V. (2023). Military Aircraft Detection Using YOLOv5. In Intelligent Communication Technologies and Virtual Mobile Networks (pp. 865–878). Springer. https://doi.org/10.1007/978-981-99-1767-9_63
Huang, M., Yan, W., Dai, W., & Wang, J. (2023). EST-YOLOv5s: SAR Image Aircraft Target Detection Model Based on Improved YOLOv5s. IEEE Access, 11, 113027–113041. https://doi.org/10.1109/ACCESS.2023.3323575
Inamullah, I., Hassan, S., Belhaouari, S. B., & Amin, I. (2024). Deciphering the Impact of Diversity in CNN-Based Ensembles on Overcoming Data Imbalance and Scarcity in Medical Datasets: A Case Study on Diabetic Retinopathy. Informatics in Medicine Unlocked, 49, Article ID: 101557. https://doi.org/10.1016/j.imu.2024.101557
Jung, H.-K., & Choi, G.-S. (2022). Improved YOLOv5: Efficient Object Detection Using Drone Images Under Various Conditions. Applied Sciences, 12(14), Article ID: 7255. https://doi.org/10.3390/app12147255
Karimah, S., Pangestu, R. T., Febriansyah, A., & Irwan, I. (2024). Implementasi Metode YOLOv5 pada Sistem Pendeteksi Jentik Nyamuk Berbasis IoT. Jurnal Inovasi Teknologi Terapan, 2(2), 417–425. https://doi.org/10.33504/jitt.v2i2.184
Khairunisa, N., Carudin, C., & Jamaludin, A. (2024). Analisis Perbandingan Algoritma CNN dan YOLO dalam Mengidentifikasi Kerusakan Jalan. Jurnal Informatika dan Teknik Elektro Terapan, 12(3), 1756–1768. https://doi.org/10.23960/jitet.v12i3.4434
Lian-suo, W. E. I., Shen-hao, H., & Long-yu, M. (2024). MTD-YOLOv5: Enhancing Marine Target Detection with Multi-Scale Feature Fusion in YOLOv5 Model. Heliyon, 10(4), Article ID: e26145. https://doi.org/10.1016/j.heliyon.2024.e26145
Liu, G., Hu, Y., Chen, Z., Guo, J., & Ni, P. (2023). Lightweight Object Detection Algorithm for Robots with Improved YOLOv5. Engineering Applications of Artificial Intelligence, 123, Article ID: 106217. https://doi.org/10.1016/j.engappai.2023.106217
Liu, H., Wang, W., Liu, H., Yi, S., Yu, Y., & Yao, X. (2024). A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images. Computer Modeling in Engineering & Sciences, 138(1), 459–472. https://doi.org/10.32604/cmes.2023.029084
Molnar, C. (2020). Interpretable Machine Learning (3rd ed.). Lean Publishing.
Muis, A., Sunardi, S., & Yudhana, A. (2023). Comparison Analysis of Brain Image Classification Based on Thresholding Segmentation with Convolutional Neural Network. Journal of Applied Engineering and Technological Science (JAETS), 4(2), 664–673. https://doi.org/10.37385/jaets.v4i2.1583
Murthy, J. S., Siddesh, G. M., Lai, W.-C., Parameshachari, B. D., Patil, S. N., & Hemalatha, K. L. (2022). ObjectDetect: A Real‐Time Object Detection Framework for Advanced Driver Assistant Systems Using YOLOv5. Wireless Communications and Mobile Computing, 2022(1), Article ID: 9444360. https://doi.org/10.1155/2022/9444360
Oyedeji, O. A., Khan, S., & Erkoyuncu, J. A. (2024). Application of CNN for Multiple Phase Corrosion Identification and Region Detection. Applied Soft Computing, 164, Article ID: 112008. https://doi.org/10.1016/j.asoc.2024.112008
Peryanto, A., Yudhana, A., & Umar, R. (2020a). Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation. Journal of Applied Informatics and Computing, 4(1), 45–51. https://doi.org/10.30871/jaic.v4i1.2017
Peryanto, A., Yudhana, A., & Umar, R. (2020b). Rancang Bangun Klasifikasi Citra dengan Teknologi Deep Learning Berbasis Metode Convolutional Neural Network. Format: Jurnal Ilmiah Teknik Informatika, 8(2), 138–147. https://doi.org/10.22441/format.2019.v8.i2.007
Pramanik, P. K. D., Pal, S., Mukhopadhyay, M., & Singh, S. P. (2021). Big Data Classification: Techniques and Tools. In Applications of Big Data in Healthcare (pp. 1–43). Elsevier. https://doi.org/10.1016/B978-0-12-820203-6.00002-3
Pratama, B. K., Sri Lestanti, & Yusniarsi Primasari. (2024). Implementasi Algoritma You Only Look Once (YOLO) untuk Mendeteksi Bahasa Isyarat SIBI. ProTekInfo (Pengembangan Riset dan Observasi Teknik Informatika), 11(2), 7–14. https://doi.org/10.30656/protekinfo.v11i2.9105
Qiu, K., Poon, P.-L., Zhao, S., Towey, D., & Yu, L. (2024). Improving the Validation of Multiple-Object Detection Using a Complex-Network-Community-Based Relevance Metric. Knowledge-Based Systems, 299, Article ID: 112027. https://doi.org/10.1016/j.knosys.2024.112027
Ramakrishnan, A. B., Sridevi, M., Vasudevan, S. K., Manikandan, R., & Gandomi, A. H. (2024). Optimizing Brain Tumor Classification with Hybrid CNN Architecture: Balancing Accuracy and Efficiency Through oneAPI Optimization. Informatics in Medicine Unlocked, 44, Article ID: 101436. https://doi.org/10.1016/j.imu.2023.101436
Reddy, S. P. K., Harikiran, J., & Chandana, B. S. (2024). Deep CNN Based Multi Object Detection and Tracking in Video Frames with Mean Distributed Feature Set. Procedia Computer Science, 235, 723–734. https://doi.org/10.1016/j.procs.2024.04.069
Ren, Z., Zhang, H., & Li, Z. (2023). Improved YOLOv5 Network for Real-Time Object Detection in Vehicle-Mounted Camera Capture Scenarios. Sensors, 23(10), Article ID: 4589. https://doi.org/10.3390/s23104589
Rishi, G. H., Kumar, P. R., Varshit, N. C., & Sailaja, K. (2024). Real-Time Military Aircraft Detection Using YOLOv5. 2024 Second International Conference on Data Science and Information System (ICDSIS), 1–7. https://doi.org/10.1109/ICDSIS61070.2024.10594590
S, V., M, B., & V, K. (2024). Satellite Image Classification Using CNN with Particle Swarm Optimization Classifier. Procedia Computer Science, 233, 979–987. https://doi.org/10.1016/j.procs.2024.03.287
Saha, B. (2022). Drone-Bird Classification. Kaggle. https://www.kaggle.com/datasets/imbikramsaha/drone-bird-classification
Saha, D. K., Joy, A. M., & Majumder, A. (2024). YoTransViT: A Transformer and CNN Method for Predicting and Classifying Skin Diseases Using Segmentation Techniques. Informatics in Medicine Unlocked, 47, Article ID: 101495. https://doi.org/10.1016/j.imu.2024.101495
Saifullah, S., Drezewski, R., Yudhana, A., Pranolo, A., Kaswijanti, W., Suryotomo, A. P., Putra, S. A., Khaliduzzaman, A., Prabuwono, A. S., & Japkowicz, N. (2023). Nondestructive Chicken Egg Fertility Detection Using CNN-Transfer Learning Algorithms. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, 9(3), 854–871. https://doi.org/10.26555/jiteki.v9i3.26722
Sapakova, S., Sapakov, A., & Yilibule, Y. (2024). A YOLOv5-Based Model for Real-Time Mask Detection in Challenging Environments. Procedia Computer Science, 231, 267–274. https://doi.org/10.1016/j.procs.2023.12.202
Schenk, P. O., & Kern, C. (2024). Connecting Algorithmic Fairness to Quality Dimensions in Machine Learning in Official Statistics and Survey Production. AStA Wirtschafts- und Sozialstatistisches Archiv, 18(2), 131–184. https://doi.org/10.1007/s11943-024-00344-2
Sharma, V., Kannan, S., Tanya, S., & Panda, N. (2024). Detecting Plant Diseases at Scale: A Distributed CNN Approach with PySpark and Hadoop. Procedia Computer Science, 235, 1044–1057. https://doi.org/10.1016/j.procs.2024.04.099
Sileo, M., Capece, N., Gruosso, M., Nigro, M., Bloisi, D. D., Pierri, F., & Erra, U. (2024). Vision-Enhanced Peg-in-Hole for Automotive Body Parts Using Semantic Image Segmentation and Object Detection. Engineering Applications of Artificial Intelligence, 128, Article ID: 107486. https://doi.org/10.1016/j.engappai.2023.107486
Sotoude, D., Hoseinkhani, M., & Amiri Tehranizadeh, A. (2023). Context-Aware Fusion of Transformers and CNNs for Medical Image Segmentation. Informatics in Medicine Unlocked, 43, Article ID: 101396. https://doi.org/10.1016/j.imu.2023.101396
Sulistyo, W. Y., Riadi, I., & Yudhana, A. (2018). Analisis Deteksi Keaslian Citra Menggunakan Teknik Error Level Analysis dengan Forensicallybeta. Seminar Nasional Informatika 2018 (SEMNASIF 2018), 1(1), 154–159. https://jurnal.upnyk.ac.id/index.php/semnasif/article/view/2632
Sunardi, S., Yudhana, A., & Saifullah, S. (2017). Identity Analysis of Egg Based on Digital and Thermal Imaging: Image Processing and Counting Object Concept. International Journal of Electrical and Computer Engineering (IJECE), 7(1), 200–208. https://doi.org/10.11591/ijece.v7i1.pp200-208
Sunardi, S., Yudhana, A., & WindraPutri, A. R. (2022). Mass Classification of Breast Cancer Using CNN and Faster R-CNN Model Comparison. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 243–250. https://doi.org/10.22219/kinetik.v7i3.1462
Surya, R. A., Fadlil, A., & Yudhana, A. (2019). Identification of Pekalongan Batik Images Using Backpropagation Method. Journal of Physics: Conference Series, 1373(1), Article ID: 012049. https://doi.org/10.1088/1742-6596/1373/1/012049
Tan, G., & Liu, Y. (2023). Picture Processing Optimization Technology Based on Mask R-CNN Algorithm. Procedia Computer Science, 228, 647–654. https://doi.org/10.1016/j.procs.2023.11.075
Tjahyanto, A., & Atletiko, F. J. (2022). Peningkatan Kinerja Pengklasifikasi Objek Bawah Laut dengan Deep Learning. MATRIK: Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, 21(3), 753–760. https://doi.org/10.30812/matrik.v21i3.1466
Umar, R., Riadi, I., & Miladiah, M. (2018). Sistem Identifikasi Keaslian Uang Kertas Rupiah Menggunakan Metode K-Means Clustering. Techno.Com, 17(2), 179–185. https://doi.org/10.33633/tc.v17i2.1681
Wahyudi, A. A., Khumaidi, A., Rahmat, M. B., Riananda, D. P., Syai’in, M., & Endrasmono, J. (2024). Implementasi Robot Operating System (ROS) untuk Meningkatkan Akurasi Deteksi Bola Menggunakan YOLO V5 pada KRSBI-Beroda. Jurnal Elektronika dan Otomasi Industri, 11(2), 648–661. https://doi.org/10.33795/elkolind.v11i2.5234
Wang, M., Yang, W., Wang, L., Chen, D., Wei, F., KeZiErBieKe, H., & Liao, Y. (2023). FE-YOLOv5: Feature Enhancement Network Based on YOLOv5 for Small Object Detection. Journal of Visual Communication and Image Representation, 90, Article ID: 103752. https://doi.org/10.1016/j.jvcir.2023.103752
Wittmer, A., & Müller, A. (2021). The Environment of Aviation. In Aviation Systems (pp. 79–117). Management of the Integrated Aviation Value Chain, 79–117. https://doi.org/10.1007/978-3-030-79549-8_3
Xu, S., Zhang, M., Chen, J., & Zhong, Y. (2024). YOLO-HyperVision: A Vision Transformer Backbone-Based Enhancement of YOLOv5 for Detection of Dynamic Traffic Information. Egyptian Informatics Journal, 27, Article ID: 100523. https://doi.org/10.1016/j.eij.2024.100523
Ye, Z., Yang, K., Lin, Y., Guo, S., Sun, Y., Chen, X., Lai, R., & Zhang, H. (2023). A Comparison Between Pixel-Based Deep Learning and Object-Based Image Analysis (OBIA) for Individual Detection of Cabbage Plants Based on UAV Visible-Light Images. Computers and Electronics in Agriculture, 209, Article ID: 107822. https://doi.org/10.1016/j.compag.2023.107822
Yi, D., Ahmedov, H. B., Jiang, S., Li, Y., Flinn, S. J., & Fernandes, P. G. (2024). Coordinate-Aware Mask R-CNN with Group Normalization: A Underwater Marine Animal Instance Segmentation Framework. Neurocomputing, 583, Article ID: 127488. https://doi.org/10.1016/j.neucom.2024.127488
Yudhana, A., Sunardi, S., & Saifullah, S. (2017). Segmentation Comparing Eggs Watermarking Image and Original Image. Bulletin of Electrical Engineering and Informatics, 6(1), 47–53. https://doi.org/10.11591/eei.v6i1.595
Zhang, J., Hou, C., Yang, X., Yang, X., Yang, W., & Cui, H. (2024). Advancing Face Detection Efficiency: Utilizing Classification Networks for Lowering False Positive Incidences. Array, 22, Article ID: 100347. https://doi.org/10.1016/j.array.2024.100347
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Astika Ayuningtyas, Imam Riadi, Anton Yudhana

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.




