Model Prediksi Risiko Kanker Serviks dengan Pendekatan Support Vector Machine

Authors

  • Juwita Stefany Hutapea Universitas Logistik dan Bisnis Internasional
  • Nisa Hanum Harani Universitas Logistik dan Bisnis Internasional
  • Cahyo Prianto Universitas Logistik dan Bisnis Internasional

DOI:

https://doi.org/10.14421/jiska.5445

Keywords:

Cervical Cancer, Prediction, Support Vector Machine, SMOTE, PCA

Abstract

Cervical cancer is one of the leading causes of death in women, especially in developing countries due to delays in early diagnosis. Developing a risk prediction model based on the Support Vector Machine (SVM) algorithm is one way to support a more accurate and efficient early detection process. The research object is medical records of female patients obtained from hospitals in Medan City, with a total of 164 patient data. The development process was carried out through the CRISP-DM stages, which include data cleaning, feature transformation, class balancing with SMOTE, and dimensionality reduction using PCA. The evaluation results showed that the best model was obtained with a PCA configuration with 9 principal components (90% variance) and a test size of 80:20, resulting in an accuracy of 88%, a precision of 88%, a recall of 84%, and an F1-score of 86%. Cross-validation evaluation with 5 folds provided the best average performance and the smallest standard deviation, indicating model stability. The final model was implemented in a web-based system to facilitate digital early detection. This study shows that SVM with the SMOTE and PCA approaches is effective in predicting cervical cancer risk accurately and efficiently.

References

Admojo, F. T., & Ahsanawati. (2020). Klasifikasi Aroma Alkohol Menggunakan Metode KNN. Indonesian Journal of Data and Science, 1(2), 34–38. https://doi.org/10.33096/ijodas.v1i2.12

Alsmariy, R., Healy, G., & Abdelhafez, H. (2020). Predicting Cervical Cancer Using Machine Learning Methods. International Journal of Advanced Computer Science and Applications, 11(7), 173–184. https://doi.org/10.14569/IJACSA.2020.0110723

Binanto, I., B, J. P. K., & Leokadja, L. (2024). Perbandingan Metode Klasifikasi Random Forest dan Support Vector Machine Terhadap Dataset Resiko Kanker Serviks. JTRISTE, 11(1), 60–66. https://doi.org/10.55645/jtriste.v11i1.507

Cahyaningtyas, C., Manongga, D., & Sembiring, I. (2022). Algorithm Comparison and Feature Selection for Classification of Broiler Chicken Harvest. Jurnal Teknik Informatika (Jutif), 3(6), 1717–1727. https://doi.org/10.20884/1.jutif.2022.3.6.493

Dzulhijjah, D. A., Herlambang, M. B., & Haifan, M. (2024). Implementasi Framework CRISP-DM untuk Proses Data Mining Aplikasi Credit Scoring PT. XYZ. Seminar Nasional Sains dan Teknologi “SainTek” Seri I, 1(1), 238–251. https://conference.ut.ac.id/index.php/saintek/article/view/2337

Ekawati, F. M., Listiani, P., Idaiani, S., Thobari, J. A., & Hafidz, F. (2024). Cervical Cancer Screening Program in Indonesia: Is It Time for HPV-DNA Tests? Results of a Qualitative Study Exploring the Stakeholders’ Perspectives. BMC Women’s Health, 24(1), Article ID: 125. https://doi.org/10.1186/s12905-024-02946-y

Fatmawati, A., Latifah, U. B., S, A. S., & Zuhriya, T. K. (2025). Klasifikasi Emosi Teks Pengguna Twitter Menggunakan Metode SVM. SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi), 9, 1999–2007. https://doi.org/10.29407/hq9jyy12

Hasanah, M. A., Soim, S., & Handayani, A. S. (2021). Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. Journal of Applied Informatics and Computing, 5(2), 103–108. https://doi.org/10.30871/jaic.v5i2.3200

Indarti, J. (2023). The Role of Social Obstetrics and Gynecology in the Coverage of Cervical Cancer Screening in the Era of Health Transformation in Indonesia. Indonesian Journal of Obstetrics and Gynecology, 198–200. https://doi.org/10.32771/inajog.v11i4.2181

Jalil, A., Homaidi, A., & Fatah, Z. (2024). Implementasi Algoritma Support Vector Machine untuk Klasifikasi Status Stunting pada Balita. G-Tech: Jurnal Teknologi Terapan, 8(3), 2070–2079. https://doi.org/10.33379/gtech.v8i3.4811

Mulla, G. A. A., Demir, Y., & Hassan, M. (2021). Combination of PCA with SMOTE Oversampling for Classification of High-Dimensional Imbalanced Data. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(3), 858–869. https://doi.org/10.17798/bitlisfen.939733

Oktafiani, R., & Itje Sela, E. (2024). Breast Cancer Classification with Principal Component Analysis and SMOTE Using Random Forest Method and Support Vector Machine. Article in International Journal of Computer Applications, 186(16), 1–8. https://doi.org/10.5120/ijca2024923537

Parman, N. H., Hassan, R., & Zakaria, N. H. (2024). Breast Cancer Prediction Using Support Vector Machine Ensemble with PCA Feature Selection Method. International Journal of Innovative Computing, 14(1), 15–19. https://doi.org/10.11113/ijic.v14n1.461

Pinto, A., Ferreira, D., Neto, C., Abelha, A., & Machado, J. (2020). Data Mining to Predict Early Stage Chronic Kidney Disease. Procedia Computer Science, 177, 562–567. https://doi.org/10.1016/j.procs.2020.10.079

Prasetyo, S. D., Hilabi, S. S., & Nurapriani, F. (2023). Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN. Jurnal KomtekInfo, 10, 1–7. https://doi.org/10.35134/komtekinfo.v10i1.330

Schröer, C., Kruse, F., & Gómez, J. M. (2021). A Systematic Literature Review on Applying CRISP-DM Process Model. Procedia Computer Science, 181, 526–534. https://doi.org/10.1016/j.procs.2021.01.199

Singh, D., Vignat, J., Lorenzoni, V., Eslahi, M., Ginsburg, O., Lauby-Secretan, B., Arbyn, M., Basu, P., Bray, F., & Vaccarella, S. (2023). Global Estimates of Incidence and Mortality of Cervical Cancer in 2020: A Baseline Analysis of the WHO Global Cervical Cancer Elimination Initiative. The Lancet Global Health, 11(2), e197–e206. https://doi.org/10.1016/S2214-109X(22)00501-0

Studer, S., Bui, T. B., Drescher, C., Hanuschkin, A., Winkler, L., Peters, S., & Müller, K.-R. (2021). Towards CRISP-ML(Q): A Machine Learning Process Model with Quality Assurance Methodology. Machine Learning and Knowledge Extraction, 3(2), 392–413. https://doi.org/10.3390/make3020020

Sulistiyono, M., Pristyanto, Y., Adi, S., & Gumelar, G. (2021). Implementasi Algoritma Synthetic Minority Over-Sampling Technique untuk Menangani Ketidakseimbangan Kelas pada Dataset Klasifikasi. SISTEMASI, 10(2), 445–459. https://doi.org/10.32520/stmsi.v10i2.1303

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Sylvia, P. H., Arifin, O., Arpan, A., Permata, R., Handoko, D., & Fitriyah. (2024). Evaluasi Kinerja Algoritma Naïve Bayes, KNN, dan SVM dalam Analisis Sentimen Media Sosial. Jusikom: Jurnal Sistem Komputer Musi Rawas, 9(2), 157–166.

Tangkelayuk, A., & Mailoa, E. (2022). Klasifikasi Kualitas Air Menggunakan Metode KNN, Naïve Bayes, dan Decision Tree. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 9(2), 1109–1119. https://doi.org/10.35957/jatisi.v9i2.2048

Triginandri, R., & Subhiyakto, E. R. (2024). Deteksi Dini Cacar Monyet menggunakan Convolutional Neural Network (CNN) dalam Aplikasi Mobile. Edumatic: Jurnal Pendidikan Informatika, 8(2), 516–525. https://doi.org/10.29408/edumatic.v8i2.27625

Downloads

Published

2026-01-25

How to Cite

Model Prediksi Risiko Kanker Serviks dengan Pendekatan Support Vector Machine. (2026). JISKA (Jurnal Informatika Sunan Kalijaga), 11(1), 114-126. https://doi.org/10.14421/jiska.5445

Similar Articles

11-20 of 61

You may also start an advanced similarity search for this article.