Perbandingan Kinerja MobileNetV2 dan VGG16 dalam Klasifikasi Penyakit pada Citra Daun Tanaman Cabai
DOI:
https://doi.org/10.14421/jiska.5075Keywords:
Chili Diseases, Deep Learning, Image Classification, Neural Network, Transfer LearningAbstract
Chili peppers play a crucial role in the Indonesian economy, serving as a significant source of income for many farmers. Price fluctuations influenced by weather conditions make this crop vulnerable to diseases that can impact productivity. However, leaves are key indicators of plant health, revealing early disease symptoms before they spread. This research focuses on detecting diseases in chili plants using neural network architectures via transfer learning, specifically MobileNetV2 and VGG16, to classify chili leaf images. The study aims to identify three disease classes: begomovirus, leaf spots, and healthy leaves. The dataset comprises 3,150 leaf images, split into 70% for training and 30% for testing. Results show that MobileNetV2 achieved an accuracy of 99.47% and VGG16 98.62%, with evaluation using a confusion matrix indicating good performance in disease identification, where MobileNetV2 offers better computational efficiency. Thus, transfer learning can effectively identify leaf diseases in chili plants.
References
Alkanan, M., & Gulzar, Y. (2024). Enhanced Corn Seed Disease Classification: Leveraging MobileNetV2 with Feature Augmentation and Transfer Learning. Frontiers in Applied Mathematics and Statistics, 9(1), Article ID:1320177. https://doi.org/10.3389/fams.2023.1320177
Andini, W., Zahra, S. K., Abdurrahman, M., & Sebayang, V. B. (2024). Analisis Fluktuasi Harga Terhadap Faktor-Faktor yang Mempengaruhi Produktivitas Usaha Tani Cabai Merah di Indonesia. Jurnal Riset dan Inovasi Manajemen, 2(2), 162–172. https://doi.org/10.59581/jrim-widyakarya.v2i2.3526
Arnob, A. S., Kausik, A. K., Islam, Z., Khan, R., & Bin Rashid, A. (2025). Comparative Result Analysis of Cauliflower Disease Classification Based on Deep Learning Approach VGG16, Inception V3, ResNet, and a Custom CNN Model. Hybrid Advances, 10, Article ID: 100440. https://doi.org/10.1016/j.hybadv.2025.100440
Chaithanya, A. S., & Rachana, M. (2023). Identification of Diseased Papaya Leaf Through Transfer Learning. Indian Journal of Science and Technology, 16(48), 4676–4687. https://doi.org/10.17485/IJST/v16i48.2690
Gulzar, Y. (2023). Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique. Sustainability, 15(3), Article ID: 1906. https://doi.org/10.3390/su15031906
Hermanto, A. R., Aziz, A., & Sudianto, S. (2024). Perbandingan Arsitektur MobileNetV2 dan RestNet50 untuk Klasifikasi Jenis Buah Kurma. Jurnal Sistem dan Teknologi Informasi (JustIN), 12(4), 630–637. https://doi.org/10.26418/justin.v12i4.80358
Hicks, S. A., Strümke, I., Thambawita, V., Hammou, M., Riegler, M. A., Halvorsen, P., & Parasa, S. (2022). On Evaluation Metrics for Medical Applications of Artificial Intelligence. Scientific Reports, 12(1), Article ID: 5979. https://doi.org/10.1038/s41598-022-09954-8
Li, D., Zhang, C., Li, J., Li, M., Huang, M., & Tang, Y. (2024). MCCM: Multi-Scale Feature Extraction Network for Disease Classification and Recognition of Chili Leaves. Frontiers in Plant Science, 15, 1–19. https://doi.org/10.3389/fpls.2024.1367738
Li, Y., Zou, D., Shrestha, N., Xu, X., Wang, Q., Jia, W., & Wang, Z. (2020). Spatiotemporal Variation in Leaf Size and Shape in Response to Climate. Journal of Plant Ecology, 13(1), 87–96. https://doi.org/10.1093/jpe/rtz053
Maftukhah, A., Fadlil, A., & Sunardi, S. (2024). Butterfly Image Classification Using Convolution Neural Network with AlexNet Architecture. Jurnal INFOTEL, 16(1), 82–95. https://doi.org/10.20895/infotel.v16i1.1004
Mostafa, S., Wang, Y., Zeng, W., & Jin, B. (2022). Plant Responses to Herbivory, Wounding, and Infection. International Journal of Molecular Sciences, 23(13), Article ID: 7031. https://doi.org/10.3390/ijms23137031
Muis, A., Sunardi, S., & Yudhana, A. (2024). CNN-based Approach for Enhancing Brain Tumor Image Classification Accuracy. International Journal of Engineering, 37(5), 984–996. https://doi.org/10.5829/IJE.2024.37.05B.15
Nguyen, T.-H., Nguyen, T.-N., & Ngo, B.-V. (2022). A VGG-19 Model with Transfer Learning and Image Segmentation for Classification of Tomato Leaf Disease. AgriEngineering, 4(4), 871–887. https://doi.org/10.3390/agriengineering4040056
Paymode, A. S., & Malode, V. B. (2022). Transfer Learning for Multi-Crop Leaf Disease Image Classification Using Convolutional Neural Network VGG. Artificial Intelligence in Agriculture, 6(1), 23–33. https://doi.org/10.1016/j.aiia.2021.12.002
Pramudhita, D. A., Azzahra, F., Arfat, I. K., Magdalena, R., & Saidah, S. (2023). Strawberry Plant Diseases Classification Using CNN Based on MobileNetV3-Large and EfficientNet-B0 Architecture. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, 9(3), 522–534. https://doi.org/10.26555/jiteki.v9i3.26341
Prasetyo, A. D., & Agustinur, A. (2022). Inventarisasi Penyakit pada Tanaman Cabai Merah (Capsicum annum l.) di Kebun Warga Gampong Suak Raya Kecamatan Johan Pahlawan Kabupaten Aceh Barat. Jurnal Agrotek Lestari, 8(1), 70–75. https://doi.org/10.35308/jal.v8i1.5293
Prasetyo, K., Putri, D. D., Kartika Eka Wijayanti, I., & Zulkifli, L. (2023). Forecasting of Red Chilli Prices in Banyumas Regency: The ARIMA Approach. E3S Web of Conferences, 444, Article ID: 02017. https://doi.org/10.1051/e3sconf/202344402017
Raghuram, K., & Borah, M. D. (2025). A Hybrid Learning Model for Tomato Plant Disease Detection Using Deep Reinforcement Learning with Transfer Learning. Procedia Computer Science, 252, 341–354. https://doi.org/10.1016/j.procs.2024.12.036
Ramadhani, A. N. M., Saraswati, G. W., Agung, R. T., & Santoso, H. A. (2023). Performance Comparison of Convolutional Neural Network and MobileNetV2 for Chili Diseases Classification. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 7(4), 940–946. https://doi.org/10.29207/resti.v7i4.5028
Raufer, L., Wiedey, J., Mueller, M., Penava, P., & Buettner, R. (2025). A Deep Learning-Based Approach for the Detection of Cucumber Diseases. PLOS ONE, 20(4), Article ID: e0320764. https://doi.org/10.1371/journal.pone.0320764
Rustanto, D. W., Liantoni, F., & Prakisya, N. P. T. (2024). Identifikasi Penyakit Daun pada Tanaman Padi Menggunakan Ekstraksi Fitur Gray Level Co-occurrence Matrix (GLCM) dan Metode K-Nearest Neighbour (KNN). Jurnal Sistem dan Teknologi Informasi (JustIN), 12(1), 100–106. https://doi.org/10.26418/justin.v12i1.69752
Sekretariat Jenderal Kementerian Pertanian. (2023). Statistik Konsumsi Pangan Tahun 2023 (Mas’ud & S. Wahyuningsih, Eds.). Pusat Data dan Sistem Informasi Pertanian.
Siddiqui, F. M. (2023). Chili Leaf Disease Prediction Using CNN. International Journal for Research in Applied Science and Engineering Technology, 11(5), 4791–4797. https://doi.org/10.22214/ijraset.2023.52757
Singh, T., Kumar, K., & Bedi, S. (2021). A Review on Artificial Intelligence Techniques for Disease Recognition in Plants. IOP Conference Series: Materials Science and Engineering, 1022(1), Article ID: 012032. https://doi.org/10.1088/1757-899X/1022/1/012032
Syukur, M. (2018). 8 Kiat Sukses Panen Cabai Sepanjang Musim. AgroMedia Pustaka.
Winiarti, S., & Khoirunnisa, I. I. (2024). Mobile Application Development for Chili Disease Detection with Convolutional Neural Network. International Journal of Informatics and Computation, 6(2), 97–112. https://doi.org/10.35842/ijicom.v6i2.93
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Itsnaini Irvina Khoirunnisa, Abdul Fadlil, Herman Yuliansyah

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.




