Sistem Deteksi Gerakan Kecurangan UTBK Real-Time dengan YOLOv8 dan Optical Flow

Authors

  • Muhammad Naufal Ardiansyah University of Pembangunan Nasional Veteran Jawa Timur image/svg+xml
  • Farrel Zikri Suryahadi University of Pembangunan Nasional Veteran Jawa Timur image/svg+xml
  • Hendrico Edhent Surya Pratama University of Pembangunan Nasional Veteran Jawa Timur image/svg+xml
  • Anggraini Puspita Sari University of Pembangunan Nasional Veteran Jawa Timur image/svg+xml

DOI:

https://doi.org/10.14421/jiska.5365

Keywords:

UTBK Cheating, Motion Detection, Pose Estimation, YOLOv8, Optical Flow

Abstract

Integrity and honesty are fundamental aspects of education, including the implementation of the Computer-Based Written Examination (UTBK). Conventional exam supervision is considered less effective in monitoring participants’ behavior due to the limitations in human observation capabilities and consistency. This study develops a real-time cheating-detection system based on camera input by integrating the YOLOv8 algorithm with Farnebäck optical flow. The YOLOv8 algorithm identifies participants’ body poses and activities directly from video footage, while Optical Flow analyzes the direction and motion patterns between frames over time. The system is designed to recognize various suspicious poses such as head-turning, bowing, and cheating-related gestures that indicate potential dishonesty. All detection results are automatically recorded in an SQLite database, complete with timestamps and visual evidence. Experimental results show that the system achieves 94.3% accuracy in detecting suspicious movements. The combination of both methods also helps maintain detection stability when keypoints are not consistently captured in some frames. Additionally, the system is equipped with a graphical user interface (GUI) to facilitate easier monitoring and analysis. These results demonstrate that a pose-and-motion analysis-based approach offers an intelligent and efficient solution for enhancing digital supervision of UTBK examinations.

References

Bimantoro, F., Wijaya, I. G. P. S., & Aohana, M. R. (2024). Pendeteksian Kecurangan Ujian Melalui CCTV Menggunakan Algoritma YOLOv5. Seminar Nasional Teknologi & Sains, 3(1), 109–117. https://doi.org/10.29407/stains.v3i1.4360

Chavan, R., Gulge, A., & Bhandare, S. (2024). Moving Object Detection and Classification Using Deep Learning Techniques. Tuijin Jishu/Journal of Propulsion Technology, 45(1), 1001–4055. https://www.propulsiontechjournal.com/index.php/journal/article/view/5000

Erdem, B., & Karabatak, M. (2025). Cheating Detection in Online Exams Using Deep Learning and Machine Learning. Applied Sciences, 15(1), Article ID: 400. https://doi.org/10.3390/app15010400

Gopane, S., Kotecha, R., Obhan, J., & Pandey, R. K. (2024). Cheat Detection in Online Examinations Using Artificial Intelligence. ASEAN Engineering Journal, 14(1), 121–128. https://doi.org/10.11113/aej.v14.20188

Hadibrata, L., & Rochadiani, T. H. (2024). Deteksi Potensi Menyontek Menggunakan Feedforward Neural Network pada Ujian Daring. SINTECH (Science and Information Technology) Journal, 7(2), 92–100. https://doi.org/10.31598/sintechjournal.v7i2.1585

Hidayatullah, D., Ardiansah, T., & Styawati, S. (2022). Sistem Informasi Reservasi Pelayanan dan Penyewaan Fasilitas Lapangan Futsal Berbasis Web dengan Metode Waterfall. Jurnal Teknologi dan Sistem Informasi (JTSI), 3(3), 64–68. https://doi.org/10.33365/jtsi.v3i3.1994

Iskandar, A. P., Thohir, M. I., Kharisma, I. L., Kamdan, & Fergina, A. (2024). Implementasi Deteksi Langsung pada Sistem Ujian Online Menggunakan Algoritma Convolutional Neural Network. Jurnal CoSciTech (Computer Science and Information Technology), 5(2), 483–492. https://doi.org/10.37859/coscitech.v5i2.7270

Jannah, M. (2025). Pendekatan Penelitian Pendidikan Metode Penelitian Kualitatif, Metode Penelitian Kuantitatif dan Metode Penelitian Kombinasi. Shofiya: Jurnal Pendidikan Islam, 1(1), 23–40. https://nuruledukasi.com/index.php/shofiya

Karim, I. N., Kadir, D. A., & Ali, F. (2020). Development of Detection System on Suspicious Behaviour During Exam. Journal of Computing Technologies and Creative Content, 5(2), 75–81. https://www.jtec.org.my/index.php/JTeC/article/view/434

Nur, T., Huzaeni, H., & Khadafi, M. (2023). Implementasi Metode Object Detection dengan Algoritma You Only Look Once (YOLO) untuk Deteksi Kecurangan di dalam Ruang Ujian. Jurnal Teknologi Rekayasa Informasi dan Komputer, 6(1), 28–33. https://doi.org/10.30811/jtrik.v6i1.4699

Pangestu, M. P., Wiyono, S., & Af’idah, D. I. (2024). Platform Ujian Online Berbasis Pendeteksi Gerakan Kecurangan Menggunakan Kamera. Infomatek, 26(1), 55–62. https://doi.org/10.23969/infomatek.v26i1.11208

Prabowo, T. T. (2021). Efektivitas Sistem Temu Kembali Informasi Perpustakaan Digital Institut Seni Indonesia (ISI) Yogyakarta dalam Tinjauan Recall dan Precision. Media Pustakawan, 28(1), 37–48. https://doi.org/10.37014/medpus.v28i1.1087

Pratama, K. A., Subagio, R. T., Hatta, M., & Asih, V. (2021). Implementasi Laod Balancing pada Web Server Menggunakan Apache dengan Server Mirror Data Secara Real Time. Jurnal Digit, 11(2), 178. https://doi.org/10.51920/jd.v11i2.203

Saepudin, S., Sujana, N., Mutoffar, M. M., & Haryanto, A. A. (2024). Analisis Kinerja YOLOv8 Optimalisasi Roboflow untuk Deteksi Ekspresi Wajah Emosional dengan Machine Learning. Naratif: Jurnal Nasional Riset, Aplikasi dan Teknik Informatika, 6(2), 115–124. https://doi.org/10.53580/naratif.v6i2.292

Sari, A. P., Haromainy, M. M. Al, & Purnomo, R. (2024). Implementasi Metode Rapid Application Development pada Aplikasi Sistem Informasi Monitoring Santri Berbasis Website. Decode: Jurnal Pendidikan Teknologi Informasi, 4(1), 316–325. https://doi.org/10.51454/decode.v4i1.348

Simarmata, J. E., Laja, Y. P. W., Salsinha, C. N., Kehi, Y. J., Laki, A. G., Gomes, M. R., Asa, J. M. P., Bano, E. N., Muanley, Y. Y., & Meti, H. Y. (2022). Pelatihan Tes Kemampuan Akademik Bagi Siswa SMA Kelas XII untuk Persiapan UTBK SBMPTN 2022. Jurnal Abdi Insani, 9(2), 471–479. https://doi.org/10.29303/abdiinsani.v9i2.557

Syaharuddin, A. Z., Endang, A. H., & Alfarizi, D. A. (2023). Rancang Bangun Sistem Monitoring Aktivitas Pelanggan Berbasis Citra Menggunakan Optical Flow. Journal of Embedded Systems, Security and Intelligent Systems, 4(2), 126–131. https://doi.org/10.59562/jessi.v4i2.699

Thohari, A. N. A., Lathief, M. F., Triyono, L., & Santoso, K. (2025). Deteksi Kecurangan Ujian pada Ruangan Tertutup Menggunakan Algoritma YOLOv8. Journal of Computer Science and Informatics Engineering, 4(2), 61–71. https://doi.org/10.55537/cosie.v4i2.1100

Tjahyanti, L. P. A. S., & Gitakarma, M. S. (2024). Sistem Pendeteksi Kecurangan Ujian Menggunakan YOLO: Identifikasi Penggunaan Ponsel dan Interaksi Mencurigakan. KOMTEKS, 3(2), 25–32. https://doi.org/10.37637/komteks.v3i2.2293

Wicaksono, F. B., & Yamasari, Y. (2025). Pengembangan Model Pengawas Ujian Berbasis Kecerdasaan Buatan untuk Ujian Online. Journal of Informatics and Computer Science (JINACS), 6(03), 882–890. https://doi.org/10.26740/jinacs.v6n03.p882-890

Wulandari, Y. T., & Rosandy, T. (2024). Implementasi Computer Vision dalam Sistem Deteksi Gerakan Disiplin Kampus. Jurnal Teknika, 18(2), 343–354. https://doi.org/https://doi.org/10.5281/zenodo.11139336

Zuo, Y., Chai, S. S., & Goh, K. L. (2024). Cheating Detection in Examinations Using Improved YOLOv8 with Attention Mechanism. Journal of Computer Science, 20(12), 1668–1680. https://doi.org/10.3844/jcssp.2024.1668.1680

Downloads

Published

2026-01-25

How to Cite

Sistem Deteksi Gerakan Kecurangan UTBK Real-Time dengan YOLOv8 dan Optical Flow. (2026). JISKA (Jurnal Informatika Sunan Kalijaga), 11(1), 83-97. https://doi.org/10.14421/jiska.5365

Similar Articles

1-10 of 25

You may also start an advanced similarity search for this article.