Rice husk waste characterization: Absorption and absorbance properties for potential renewable energy applications
DOI:
https://doi.org/10.14421/edulab.2025.102.03Keywords:
Renewable energy, Research laboratory, Rice husksAbstract
Purpose – This study aims to characterize rice husks as a renewable energy source. It measures the absorption and absorbance of rice husk waste. It determines the factors that affect the efficiency of rice husks (RHS) as a renewable energy source.
Design/methods/approach – Laboratory experiments and literature reviews were the methods used in this study. Material characterization was performed using a Vector Network Analyzer (VNA) to measure electromagnetic wave absorption and a UV-VIS spectrometer to measure UV absorption.
Findings – The results of the VNA measurement of RHS HCl 0M carbon = -3.80 dB; 1M = -13.28dB, and 3M = -12.28 dB. Absorbance measurements were then performed using UV-Vis. Based on the measurements performed, the absorbance values of each material were as follows: RH HCl 0M = 0.187 AU; 1M = 0.084 AU; 3M = 0.141 AU.
Research implications/limitations – Exploring the potential of rice husks as an environmentally friendly and sustainable renewable energy source. Analyzing the physical and chemical characteristics of rice husks, including their carbon content, to determine the energy efficiency that can be generated through various conversion technologies such as combustion, activation, and measurement.
Originality/value – This study focuses on the potential of rice husks as a renewable energy source.
References
Akhter, F., Soomro, S. A., Jamali, A. R., Chandio, Z. A., Siddique, M., & Ahmed, M. (2023). Rice husk ash as green and sustainable biomass waste for construction and renewable energy applications: A review. Biomass Conversion and Biorefinery, 13(6), 4639–4649. https://doi.org/10.1007/s13399-021-01527-5
Alwadai, N., Elqahtani, Z. M., Khan, S. U., Pembere, A. M. S., Badshah, A., Mehboob, M. Y., & Nazar, M. F. (2022). Impact of halogens on electronic and photovoltaic properties of organic semiconductors: A multiscale computational modeling. Journal of Physical Organic Chemistry, 35(8), e4388. https://doi.org/10.1002/poc.4388
Anantasia, G., & Rindrayani, S. R. (2025). Metodologi penelitian quasi eksperimen. ADIBA: Journal of Education, 5(2), 183–192.
Aprida, L. F. (2018). Pemanfaatan kandungan CaO limbah karbit dan kandungan silika abu sekam padi sebagai bahan pembuatan bata beton pejal [Diploma thesis, Politeknik Perkapalan Negeri Surabaya]. http://repository.ppns.ac.id/1477/
Arshad, H., & Moin, A. (2025). Physical and chemical properties of rice husk. In M. Jawaid & B. Parmar (Eds.), Rice husk biomass (pp. 27–42). Springer Nature Singapore. https://doi.org/10.1007/978-981-96-1082-2_2
Bradu, P., Biswas, A., Nair, C., Sreevalsakumar, S., Patil, M., Kannampuzha, S., Mukherjee, A. G., Wanjari, U. R., Renu, K., Vellingiri, B., & Gopalakrishnan, A. V. (2022). RETRACTED ARTICLE: Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environmental Science and Pollution Research, 30(60), 124488–124519. https://doi.org/10.1007/s11356-022-20024-4
Dharmarajan, N. P., Vidyasagar, D., Yang, J., Talapaneni, S. N., Lee, J., Ramadass, K., Singh, G., Fawaz, M., Kumar, P., & Vinu, A. (2024). Bio-inspired supramolecular self-assembled carbon nitride nanostructures for photocatalytic water splitting. Advanced Materials, 36(2), 2306895. https://doi.org/10.1002/adma.202306895
Du, A., Li, H., Chen, X., Han, Y., Zhu, Z., & Chu, C. (2022). Recent research progress of silicon-based anode materials for lithium-ion batteries. ChemistrySelect, 7(19), e202201269. https://doi.org/10.1002/slct.202201269
Du, J., Li, T., Xu, Z., Tang, J., Qi, Q., & Meng, F. (2023). Structure–activity relationship in microstructure design for electromagnetic wave absorption applications. Small Structures, 4(11), 2300152. https://doi.org/10.1002/sstr.202300152
Jung, C. G., & Hull, R. F. C. (2023). On psychic energy. In Collected works of C. G. Jung (Vol. 8, pp. 3–66). Routledge. https://doi.org/10.4324/9781032652047-140
Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Sustainable energy transition for renewable and low-carbon grid electricity generation and supply. Frontiers in Energy Research, 9, 743114. https://doi.org/10.3389/fenrg.2021.743114
Kammen, D. M. (2006). The rise of renewable energy. Scientific American, 295(3), 84–93. 10.1038/scientificamerican0906-84
Łysień, M., Witczak, Ł., Wiatrowska, A., Fiączyk, K., Gadzalińska, J., Schneider, L., Stręk, W., Karpiński, M., Kosior, Ł., & Granek, F. (2022). High-resolution deposition of conductive and insulating materials at micrometer scale on complex substrates. Scientific Reports, 12(1), 9327. 10.1038/s41598-022-13352-5
Malik, M. A., Afzaal, M., & O’Brien, P. (2010). Precursor chemistry for main group elements in semiconducting materials. Chemical Reviews, 110(7), 4417–4446. https://doi.org/10.1021/cr900406f
Nora Dwy, S. (2023). Analisis efektivitas metode gravity-fed filtering system pada pengolahan kualitas air di Desa Pringgabaya Kabupaten Lombok Timur [Doctoral dissertation, Universitas Mataram]. http://eprints.unram.ac.id/id/eprint/41642
Pastuszak, J., & Węgierek, P. (2022). Photovoltaic cell generations and current research directions for their development. Materials, 15(16), 5542. https://doi.org/10.3390/ma15165542
Rahayu, S. U. (2022). Aplikasi semikonduktor Wittichenite (Cu₃BiS₃) pada sel surya tipe quantum dot-sensitized solar cells (QD-SSCs). Penerbit NEM.
Ramírez, A. T. O., Tovar, M. R., & Silva-Marrufo, O. (2024). Rice husk reuse as a sustainable energy alternative in Tolima, Colombia. Scientific Reports, 14(1), 10391. 10.1038/s41598-024-60115-5
Rianto, D., Satria, N., Putra, A., & Sumantyo, J. T. S. (2019). Effect of activating agent on electromagnetic waves absorption of carbon-based radar absorber material. In Proceedings of the 2019 Photonics & Electromagnetics Research Symposium–Spring (pp. 1281–1283). IEEE. https://doi.org/10.1109/PIERS-Spring46901.2019.9017548
Saha, S., Islam, M. T., Calhoun, J., & Reza, T. (2023). Effect of hydrothermal carbonization on fuel and combustion properties of shrimp shell waste. Energies, 16(14), 5534. https://doi.org/10.3390/en16145534
Sandya, Y., Prihantono, & Musalamah, S. (2019). Penggunaan abu sekam padi sebagai pengganti semen pada beton geopolimer. Educational Building: Jurnal Pendidikan Teknik Bangunan dan Sipil, 5(2), Article 2. https://doi.org/10.24114/ebjptbs.v5i2
September, L. A., Kheswa, N., Seroka, N. S., & Khotseng, L. (2023). Green synthesis of silica and silicon from agricultural residue sugarcane bagasse ash: A mini review. RSC Advances, 13(2), 1370–1380. https://doi.org/10.1039/D2RA07490G
Setiyo, M., & Waluyo, B. (2025). Metodologi penelitian dan perancangan eksperimen. Unimma Press.
Shahcheragh, S. K., Bagheri Mohagheghi, M. M., & Shirpay, A. (2023). Effect of physical and chemical activation methods on the structure, optical absorbance, band gap, and Urbach energy of porous activated carbon. SN Applied Sciences, 5(12), 313. https://doi.org/10.1007/s42452-023-05559-6
Singh, B. (2018). Rice husk ash. In Waste and supplementary cementitious materials in concrete (pp. 417–460). Elsevier. https://doi.org/10.1016/B978-0-08-102156-9.00013-4
Siu, C. (2022). Semiconductor physics. In Electronic devices, circuits, and applications (pp. 35–39). Springer. https://doi.org/10.1007/978-3-030-80538-8_3
Soltani, N., Bahrami, A., Pech-Canul, M. I., & González, L. A. (2015). Review on the physicochemical treatments of rice husk for production of advanced materials. Chemical Engineering Journal, 264, 899–935. https://doi.org/10.1016/j.cej.2014.11.056
Steven, S., Restiawaty, E., & Bindar, Y. (2023). A simulation study on rice husk to electricity and silica mini-plant: From organic Rankine cycle (ORC) study to its business and investment plan. Waste and Biomass Valorization, 14(5), 1787–1797. https://doi.org/10.1007/s12649-022-01957-w
Taiye, M. A., Hafida, W., Kong, F., & Zhou, C. (2024). A review of the use of rice husk silica as a sustainable alternative to traditional silica sources in various applications. Environmental Progress & Sustainable Energy, 43(6), e14451. https://doi.org/10.1002/ep.14451
Tjiwidjaja, H., & Salima, R. (2023). Dampak energi fosil terhadap perubahan iklim dan solusi berbasis energi hijau. Jurnal Wilayah, Kota dan Lingkungan Berkelanjutan, 2(2), 166–172. https://doi.org/10.58169/jwikal.v2i2.625
Wahditiya, A. A., Semet, M. M., Nantan, Y., Istoto, E. H., Purnamasari, R., Maulana, A. P., Baali, Y., & Niati, S. M. (2025). Energi dari limbah dan sampah: Teknologi, kebijakan, dan implementasi. Yayasan Tri Edukasi Ilmiah.
Wang, B., Xu, C., Duan, G., Xu, W., & Pi, F. (2023). Review of broadband metamaterial absorbers: From principles, design strategies, and tunable properties to functional applications. Advanced Functional Materials, 33(14), 2213818. https://doi.org/10.1002/adfm.202213818
Wang, T., Wang, Q., Yin, H., Ye, Q., Zhang, H., Song, S., & Jia, F. (2025). In-situ 1T@2H MoS₂ with phase-doped arrays for full-spectrum solar absorption and high-performance solar desalination. Chemical Engineering Journal, 168163. https://doi.org/10.1016/j.cej.2025.168163
Wang, Z., Huang, J., Hu, W., Xie, D., Xu, M., & Qiao, Y. (2023). In-depth study of the sulfur migration and transformation during hydrothermal carbonization of sewage sludge. Proceedings of the Combustion Institute, 39(3), 3419–3427. https://doi.org/10.1016/j.proci.2022.07.184
Wei, D., Wang, C., Zhang, J., Zhao, H., Asakura, Y., Eguchi, M., Xu, X., & Yamauchi, Y. (2023). Water activation in solar-powered vapor generation. Advanced Materials, 35(47), 2212100. https://doi.org/10.1002/adma.202212100
Wibowo, K. (2024). Kontribusi pembangkit listrik energi terbarukan dalam mengurangi emisi karbon. Innovative: Journal of Social Science Research, 4(6), 5140–5153. https://doi.org/10.31004/innovative.v4i6.16043
Yin, Y., Liu, Q., Zhao, Y., Chen, T., Wang, J., Gui, L., & Lu, C. (2023). Recent progress and future directions of biomass-derived hierarchical porous carbon: Designing, preparation, and supercapacitor applications. Energy & Fuels, 37(5), 3523–3554. https://doi.org/10.1021/acs.energyfuels.2c04093
Zhang, P., Zhu, B., Du, P., & Travas-Sejdic, J. (2024). Electrochemical and electrical biosensors for wearable and implantable electronics based on conducting polymers and carbon-based materials. Chemical Reviews, 124(3), 722–767. https://doi.org/10.1021/acs.chemrev.3c00392
Zhang, Z., Chen, M., Zhong, T., Zhu, R., Qian, Z., Zhang, F., Yang, Y., Zhang, K., Santi, P., & Wang, K. (2023). Carbon mitigation potential afforded by rooftop photovoltaic in China. Nature Communications, 14(1), 2347. https://doi.org/10.1038/s41467-023-38079-3
Zulpadrianto, Z., Yohandri, Y., & Putra, A. (2018). Development of radar absorber material using rice husk carbon for anechoic chamber applications. IOP Conference Series: Materials Science and Engineering, 335(1), 012002. https://doi.org/10.1088/1757-899X/335/1/012002
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Edulab : Majalah Ilmiah Laboratorium Pendidikan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






