Sistem Deep-Learning Yolov8 untuk Deteksi Penggunaan APD Secara Real-Time

Authors

DOI:

https://doi.org/10.14421/jiska.5051

Keywords:

Personal Protective Equipment, Computer Vision, Deep Learning, YOLOv8, Object Detection

Abstract

Although workplace safety regulations in construction are clear, many workers are still reluctant to use Personal Protective Equipment (PPE) due to a lack of awareness, work pressure, and limited facilities. As a result, the risk of serious accidents increases. Conventional approaches such as verbal warnings or CCTV monitoring are considered less effective for early detection and prevention of violations. This study proposes an automatic detection system for PPE usage in construction areas using YOLOv8. The model was trained on a secondary dataset of 3,569 images for 100 epochs, with a 60% training, 20% validation, and 20% test split. Testing on 90 real-time frames showed good performance in detecting 8 PPE classes, with an average precision of 0.935, recall of 0.806, and F1-measure of 0.862. The results indicate that the system can classify PPE usage with high accuracy. However, a recall below 1 suggests that some objects, particularly "not wearing glasses" and "not wearing shoes," failed to be detected. The F1-measure of 0.862 reflects a good balance between precision and recall.

References

Arip, A. A. S., Sazali, N., Kadirgama, K., Jamaludin, A. S., Turan, F. M., & Razak, N. Ab. (2024). Object Detection for Safety Attire Using YOLO (You Only Look Once). Journal of Advanced Research in Applied Mechanics, 113(1), 37–51. https://doi.org/10.37934/aram.113.1.3751

Alfarizi, D. N., Pangestu, R. A., Aditya, D., Setiawan, M. A., & Rosyani, P. (2023). Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis. AI dan SPK: Jurnal Artificial Intelligent dan Sistem Penunjang, 1(1), 54–63. https://jurnalmahasiswa.com/index.php/aidanspk/article/view/144

Alfidyani, K. S., Lestantyo, D., & Wahyuni, I. (2020). HUBUNGAN PELATIHAN K3, PENGGUNAAN APD, PEMASANGAN SAFETY SIGN, DAN PENERAPAN SOP DENGAN TERJADINYA RISIKO KECELAKAAN KERJA (Studi Pada Industri Garmen Kota Semarang). Jurnal Kesehatan Masyarakat, 8(4), 478–483. https://doi.org/10.14710/jkm.v8i4.27531

Azhar, K. M., Santoso, I., & Soetrisno, Y. A. A. (2021). IMPLEMENTASI DEEP LEARNING MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK DAN ALGORITMA YOLO DALAM SISTEM PENDETEKSI UANG KERTAS RUPIAH BAGI PENYANDANG LOW VISION. Transient: Jurnal Ilmiah Teknik Elektro, 10(3), 502–509. https://doi.org/10.14710/transient.v10i3.502-509

Ganda, L. H., & Bunyamin, H. (2021). Penggunaan Augmentasi Data pada Klasifikasi Jenis Kanker Payudara dengan Model Resnet-34. Jurnal Strategi, 3(1), 187–193. https://strategi.it.maranatha.edu/index.php/strategi/article/view/246

Hand, D. J., Christen, P., & Kirielle, N. (2021). F*: an interpretable transformation of the F-measure. Machine Learning, 110(3), 451–456. https://doi.org/10.1007/s10994-021-05964-1

Hayat, A., & Morgado-Dias, F. (2022). Deep Learning-Based Automatic Safety Helmet Detection System for Construction Safety. Applied Sciences, 12(16), Article ID: 8268. https://doi.org/10.3390/app12168268

Julianti, I., & Wibawa, Y. (2024). Angka Kecelakaan Kerja Naik 15 Kasus. Benuanta; Benuanta. https://benuanta.co.id/index.php/2024/02/07/angka-kecelakaan-kerja-naik-15-kasus/134245/18/24/08/

Muhlashin, M. N. I., & Stefanie, A. (2023). Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Menggunakan YOLO V8. JATI (Jurnal Mahasiswa Teknik Informatika), 7(2), 1363–1368. https://doi.org/10.36040/jati.v7i2.6927

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI), 5(2), 697–711. https://doi.org/10.30645/J-SAKTI.V5I2.369

Peraturan Menteri Tenaga Kerja Dan Transmigrasi Republik Indonesia Nomor PER.08/MEN/VII/2010 Tentang Alat Pelindung Diri, 5 (2010). https://jdih.kemnaker.go.id/peraturan/detail/158/peraturan-menteri-nomor-8-tahun-2010

Prabowo, T. T. (2021). Efektivitas Sistem Temu Kembali Informasi Perpustakaan Digital Institut Seni Indonesia (ISI) Yogyakarta dalam Tinjauan Recall dan Precision. Media Pustakawan, 28(1), 37–48. https://doi.org/10.37014/medpus.v28i1.1087

Rahma, L., Syaputra, H., Mirza, A. H., & Purnamasari, S. D. (2021). Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once). Jurnal Nasional Ilmu Komputer, 2(3), 213–232. https://doi.org/10.47747/jurnalnik.v2i3.534

Santos, C., Aguiar, M., Welfer, D., & Belloni, B. (2022). A New Approach for Detecting Fundus Lesions Using Image Processing and Deep Neural Network Architecture Based on YOLO Model. Sensors, 22(17), Article ID: 6441. https://doi.org/10.3390/s22176441

Scheuerman, M. K., Hanna, A., & Denton, R. (2021). Do Datasets Have Politics? Disciplinary Values in Computer Vision Dataset Development. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1–37. https://doi.org/10.1145/3476058

Supriyanto, R., & Siahaan, D. O. (2024). Sistem Informasi Anotasi Data Penelitian : Pengolahan Data. Jurnal Teknik ITS, 13(1), 98–103. https://doi.org/10.12962/j23373539.v13i1.128602

Surbakti, A. Q., Hayami, R., & Amien, J. Al. (2021). Analisa Tanggapan Terhadap PSBB di Indonesia dengan Algoritma Decision Tree pada Twitter. Jurnal CoSciTech (Computer Science and Information Technology), 2(2), 91–97. https://doi.org/10.37859/coscitech.v2i2.2851

Wijaya, D. P., Murti, L. D., & Rachman, M. R. (2022). Recall dan Precision pada Online Public Access Catalog (OPAC) Dinas Arsip dan Perpustakaan Kota Bandung. VISI PUSTAKA: Buletin Jaringan Informasi Antar Perpustakaan, 24(1), 81–91. https://doi.org/10.37014/visipustaka.v24i1.2915

Wulandari, S. (2023). Memastikan Keselamatan dan Kesehatan di Industri Konstruksi: Tantangan dan Solusi K3 yang Efektif. ARRAZI: Scientific Journal of Health, 1(2), 103–112. https://journal.csspublishing.com/index.php/arrazi/article/view/255

Yasen, N. M., Rifka, S., Vitria, R., & Yulindon, Y. (2023). Pemanfaatan Yolo untuk Deteksi Hama dan Penyakit pada Daun Cabai Menggunakan Metode Deep Learning. Elektron: Jurnal Ilmiah, 15, 63–71. https://doi.org/10.30630/eji.0.0.397

Downloads

Published

2026-01-25

How to Cite

Sistem Deep-Learning Yolov8 untuk Deteksi Penggunaan APD Secara Real-Time. (2026). JISKA (Jurnal Informatika Sunan Kalijaga), 11(1), 44-55. https://doi.org/10.14421/jiska.5051

Similar Articles

1-10 of 76

You may also start an advanced similarity search for this article.