Sistem Deep-Learning Yolov8 untuk Deteksi Penggunaan APD Secara Real-Time
DOI:
https://doi.org/10.14421/jiska.5051Keywords:
Personal Protective Equipment, Computer Vision, Deep Learning, YOLOv8, Object DetectionAbstract
Although workplace safety regulations in construction are clear, many workers are still reluctant to use Personal Protective Equipment (PPE) due to a lack of awareness, work pressure, and limited facilities. As a result, the risk of serious accidents increases. Conventional approaches such as verbal warnings or CCTV monitoring are considered less effective for early detection and prevention of violations. This study proposes an automatic detection system for PPE usage in construction areas using YOLOv8. The model was trained on a secondary dataset of 3,569 images for 100 epochs, with a 60% training, 20% validation, and 20% test split. Testing on 90 real-time frames showed good performance in detecting 8 PPE classes, with an average precision of 0.935, recall of 0.806, and F1-measure of 0.862. The results indicate that the system can classify PPE usage with high accuracy. However, a recall below 1 suggests that some objects, particularly "not wearing glasses" and "not wearing shoes," failed to be detected. The F1-measure of 0.862 reflects a good balance between precision and recall.
References
Arip, A. A. S., Sazali, N., Kadirgama, K., Jamaludin, A. S., Turan, F. M., & Razak, N. Ab. (2024). Object Detection for Safety Attire Using YOLO (You Only Look Once). Journal of Advanced Research in Applied Mechanics, 113(1), 37–51. https://doi.org/10.37934/aram.113.1.3751
Alfarizi, D. N., Pangestu, R. A., Aditya, D., Setiawan, M. A., & Rosyani, P. (2023). Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis. AI dan SPK: Jurnal Artificial Intelligent dan Sistem Penunjang, 1(1), 54–63. https://jurnalmahasiswa.com/index.php/aidanspk/article/view/144
Alfidyani, K. S., Lestantyo, D., & Wahyuni, I. (2020). HUBUNGAN PELATIHAN K3, PENGGUNAAN APD, PEMASANGAN SAFETY SIGN, DAN PENERAPAN SOP DENGAN TERJADINYA RISIKO KECELAKAAN KERJA (Studi Pada Industri Garmen Kota Semarang). Jurnal Kesehatan Masyarakat, 8(4), 478–483. https://doi.org/10.14710/jkm.v8i4.27531
Azhar, K. M., Santoso, I., & Soetrisno, Y. A. A. (2021). IMPLEMENTASI DEEP LEARNING MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK DAN ALGORITMA YOLO DALAM SISTEM PENDETEKSI UANG KERTAS RUPIAH BAGI PENYANDANG LOW VISION. Transient: Jurnal Ilmiah Teknik Elektro, 10(3), 502–509. https://doi.org/10.14710/transient.v10i3.502-509
Ganda, L. H., & Bunyamin, H. (2021). Penggunaan Augmentasi Data pada Klasifikasi Jenis Kanker Payudara dengan Model Resnet-34. Jurnal Strategi, 3(1), 187–193. https://strategi.it.maranatha.edu/index.php/strategi/article/view/246
Hand, D. J., Christen, P., & Kirielle, N. (2021). F*: an interpretable transformation of the F-measure. Machine Learning, 110(3), 451–456. https://doi.org/10.1007/s10994-021-05964-1
Hayat, A., & Morgado-Dias, F. (2022). Deep Learning-Based Automatic Safety Helmet Detection System for Construction Safety. Applied Sciences, 12(16), Article ID: 8268. https://doi.org/10.3390/app12168268
Julianti, I., & Wibawa, Y. (2024). Angka Kecelakaan Kerja Naik 15 Kasus. Benuanta; Benuanta. https://benuanta.co.id/index.php/2024/02/07/angka-kecelakaan-kerja-naik-15-kasus/134245/18/24/08/
Muhlashin, M. N. I., & Stefanie, A. (2023). Klasifikasi Penyakit Mata Berdasarkan Citra Fundus Menggunakan YOLO V8. JATI (Jurnal Mahasiswa Teknik Informatika), 7(2), 1363–1368. https://doi.org/10.36040/jati.v7i2.6927
Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. Jurnal Sains Komputer & Informatika (J-SAKTI), 5(2), 697–711. https://doi.org/10.30645/J-SAKTI.V5I2.369
Peraturan Menteri Tenaga Kerja Dan Transmigrasi Republik Indonesia Nomor PER.08/MEN/VII/2010 Tentang Alat Pelindung Diri, 5 (2010). https://jdih.kemnaker.go.id/peraturan/detail/158/peraturan-menteri-nomor-8-tahun-2010
Prabowo, T. T. (2021). Efektivitas Sistem Temu Kembali Informasi Perpustakaan Digital Institut Seni Indonesia (ISI) Yogyakarta dalam Tinjauan Recall dan Precision. Media Pustakawan, 28(1), 37–48. https://doi.org/10.37014/medpus.v28i1.1087
Rahma, L., Syaputra, H., Mirza, A. H., & Purnamasari, S. D. (2021). Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once). Jurnal Nasional Ilmu Komputer, 2(3), 213–232. https://doi.org/10.47747/jurnalnik.v2i3.534
Santos, C., Aguiar, M., Welfer, D., & Belloni, B. (2022). A New Approach for Detecting Fundus Lesions Using Image Processing and Deep Neural Network Architecture Based on YOLO Model. Sensors, 22(17), Article ID: 6441. https://doi.org/10.3390/s22176441
Scheuerman, M. K., Hanna, A., & Denton, R. (2021). Do Datasets Have Politics? Disciplinary Values in Computer Vision Dataset Development. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1–37. https://doi.org/10.1145/3476058
Supriyanto, R., & Siahaan, D. O. (2024). Sistem Informasi Anotasi Data Penelitian : Pengolahan Data. Jurnal Teknik ITS, 13(1), 98–103. https://doi.org/10.12962/j23373539.v13i1.128602
Surbakti, A. Q., Hayami, R., & Amien, J. Al. (2021). Analisa Tanggapan Terhadap PSBB di Indonesia dengan Algoritma Decision Tree pada Twitter. Jurnal CoSciTech (Computer Science and Information Technology), 2(2), 91–97. https://doi.org/10.37859/coscitech.v2i2.2851
Wijaya, D. P., Murti, L. D., & Rachman, M. R. (2022). Recall dan Precision pada Online Public Access Catalog (OPAC) Dinas Arsip dan Perpustakaan Kota Bandung. VISI PUSTAKA: Buletin Jaringan Informasi Antar Perpustakaan, 24(1), 81–91. https://doi.org/10.37014/visipustaka.v24i1.2915
Wulandari, S. (2023). Memastikan Keselamatan dan Kesehatan di Industri Konstruksi: Tantangan dan Solusi K3 yang Efektif. ARRAZI: Scientific Journal of Health, 1(2), 103–112. https://journal.csspublishing.com/index.php/arrazi/article/view/255
Yasen, N. M., Rifka, S., Vitria, R., & Yulindon, Y. (2023). Pemanfaatan Yolo untuk Deteksi Hama dan Penyakit pada Daun Cabai Menggunakan Metode Deep Learning. Elektron: Jurnal Ilmiah, 15, 63–71. https://doi.org/10.30630/eji.0.0.397
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Nelson Mandela Rande Langi, Arif Fadllullah

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms as stated in http://creativecommons.org/licenses/by-nc/4.0
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.




